Overview of the ServoDyn Control & Electrical-Drive Module

NREL Wind Turbine Modeling Workshop

September 11-12, 2014
Bergen, Norway

Jason Jonkman, Ph.D.
Senior Engineer, NREL
Outline

• Introduction & Background:
 – Control & Electrical Drive Functions
 – Example Operational Controller for NREL 5-MW
 – ServoDyn – What is It?
 – Inputs, Outputs, States & Parameters

• Control & Electrical-Drive Models
 – Active Control Methods
 – Interfacing Active Controllers – 5 Options
 – Passive Control Methods
 – Features of FAST v8 Compared to v8

• Modeling Guidance

• Recent Work

• Current & Planned Work

• Future Opportunities
Introduction & Background

Control & Electrical Drive Functions

• Controls:
 – Operation
 – Start-up & shut-down
 – Safety & protection

• Sensors & actuators:
 – Sensors
 – Servo motors
 – Hydraulics

• Electrical drive:
 – Generator
 – Power electronics
 – Grid

• Faults
Introduction & Background
Example Operational Controller for NREL 5-MW Wind Turbine Modeling Workshop

- **Low-Pass Filter**
 - Filtered Speed
 - Generator Speed

- **Generator Torque**
 - Torque-Speed Lookup Table
 - Torque Limit Saturation
 - Torque Rate Saturation

- **Control Region**
 - (1, 1½, 2, 2½, or 3)

- **Gain Schedule**
 - Gain Factor
 - Proportional Gain
 - Integral Gain

- **Integrator**
 - Integrated Speed Error

- **Rated Speed**
 - Speed Error

- **Pitch Limit Saturation**
 - Rotor-Collective Blade-Pitch Angle

- **Pitch Rate Saturation**
 - Rotor-Collective Blade-Pitch Angle

- **Torque Limit Saturation**
 - Generator Torque

- **Torque Rate Saturation**
 - Generator Torque
Torque-Speed Curve (Left) & Blade-Pitch Gain-Scheduling (Right) of Onshore NREL 5-MW Turbine Under Operational Control
Steady-State Behavior of Onshore NREL 5-MW Turbine Under Operational Control
Introduction & Background
ServoDyn – What Is It?

- Control & electrical-drive module for wind turbines:
 - Used to be a fundamental part of FAST
 - Now split out as a callable module in the FAST framework with separate input files & source code
 - Includes control & electrical-drive models for blade pitch, generator torque, nacelle yaw, high-speed shaft (HSS) brake, & blade-tip brakes

- Latest version:
 - v1.01.02a-bjj (July 2014)

- User’s Guide:
Inputs, Outputs, States, & Parameters

Inputs:
- Structural motions
- Reaction loads
- Wind measurements

ServoDyn

Continuous States:
- Analog control signals

Discrete States:
- Digital control signals

Parameters:
- Controller gains
- Control limits

Outputs:
- Controller commands
Control & Electrical-Drive Models

Active Control Methods

- **Blade pitch:**
 - Collective or independent
 - To feather or to stall
 - Command the angle
 - No actuator dynamics
 - Override maneuvers available

- **Generator torque:**
 - Fixed (w/ or w/o slip) or variable speed
 - Command the torque
 - Indirect electrical power
 - Default models built in
 - Detailed electrical drive modeling through MATLAB/Simulink’s SimPowerSystems toolbox*

*Available in FAST v7, but not yet in v8
Control & Electrical-Drive Models
Active Control Methods (cont)

• HSS brake*:
 – Command the deployment

• Nacelle yaw:
 – Command the angle &/or rate
 – 2nd-order actuator determines the torque
 – Override maneuvers available

• Blade-tip brake*:
 – Command the deployment

*Available in FAST v7, but not yet in v8
Control & Electrical-Drive Models
Interfacing Active Controllers – 5 Options

1) Select from one of the built-in routines

2) Fortran subroutine:
 – Separate routines for each controller (i.e.: Separate routines for blade pitch, generator torque, nacelle yaw, & brake)
 – Requires recompile with each change to controller source code
 – Sample variable-speed torque controller based on table look-up provided with FAST archive
 – Sample PID blade-pitch controller provided with FAST archive

3) Bladed-style dynamic link library (DLL):
 – Default in FAST v8, requires customization in FAST v7
 – DLL compiled separately from FAST:
 • Mixed languages possible – Can be Fortran, C++, etc.
 – DLL is a master controller (i.e.: Pitch, torque, yaw, & brake controlled with same DLL)
 – Sample NREL 5-MW baseline controllers provided with FAST archive
Control & Electrical-Drive Models
Interfacing Active Controllers – 5 Options (cont)

4) **MATLAB/Simulink**:
- **FAST** implemented as S-Function block (.mexw32)
- Controls implemented in block-diagram form
- **SimPowerSystems** toolbox for detailed electrical drive

5) **LabVIEW**:
- **FAST** implemented as DLL callable by LabVIEW
- Hardware-in-the-loop (HIL) possible

*Available in** **FAST v7, but not yet in v8**
Control & Electrical-Drive Models

Passive Control Methods

- Apart from **ServoDyn**, **FAST** offers passive control methods:
 - Aerodynamic stall
 - Rotor teeter:
 - Optional damping & soft & hard stops
 - Nacelle yaw:
 - Free or restrained
 - Rotor furl*:
 - Optional independent up- & down-springs & dampers
 - Tail furl*:
 - Optional independent up- & down-springs & dampers

*Available in **FAST** v7, but not yet in v8
This workshop will apply **FAST v8**

- All new features are being added to the new framework
- Until all features of v7 are included in v8, both will be supported

<table>
<thead>
<tr>
<th>FAST Features</th>
<th>v7.02</th>
<th>v8.08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade-pitch control</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Override pitch maneuvers</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Generator models</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Torque control</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>High-speed shaft brake</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Nacelle-yaw control</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Override yaw maneuvers</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Blade-tip brakes</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Bladed DLL interface</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Simulink interface</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>LabVIEW interface</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>
Modeling Guidance

- No blade-pitch DOF in ElastoDyn means that controller command angle = actual angle
- Only 1 generator start & stop per simulation is possible
- To model an idling/parked rotor set:
 - BldPitch = 90° (in ElastoDyn) – Feathered
 - RotSpeed = 0 (in ElastoDyn)
 - PCMode = 0 – Disable pitch control
 - GenTiStr = True
 - TimGenOn > Tmax – Never enable generator
 - StallMod = STEADY (in AeroDyn) – Disable dynamic stall
 - IndModel = NONE (in AeroDyn) – Disable wake
- Use override maneuvers to force faults of the pitch & yaw controllers
Recent Work, Current & Planned Work, & Future Opportunities

- **Recent work:**
 - Split out **ServoDyn** as a callable module in the **FAST** framework with separate input files & source code

- **Current & planned work:**
 - Address current limitations of **FAST** v8 relative to v7
 - Wind farm super controller (**SOWFA**)

- **Future opportunities:**
 - Include more built-in methods in:
 - Generator Types 1-4
 - Input-signal low-pass filtering
 - Variable-speed torque control with transition regions & rate limits
 - Gain-scheduled PI blade-pitch control with rate limits
 - Add blade-pitch actuator models
 - Support for active-flow control
 - Support for detailed actuator modeling
 - Add measurement noise to control input signals
Questions?

Jason Jonkman, Ph.D.
+1 (303) 384 – 7026
jason.jonkman@nrel.gov