Overview of the AeroDyn Aerodynamics Module

NREL Wind Turbine Modeling Workshop

September 11-12, 2014
Bergen, Norway

Jason Jonkman, Ph.D.
Senior Engineer, NREL
Outline

• Introduction & Background:
 – AeroDyn – What Is It?
 – Inputs, Outputs, States, & Parameters
 – User Inputs
 – Flowchart

• Undisturbed Wind Inflow

• Wake Modeling:
 – Blade-Element / Momentum (BEM)
 – Generalized Dynamic Wake (GDW)

• Unsteady Airfoil Aerodynamics

• Tower Influence & Drag Load

• Aerodynamic Features of FAST v8 Compared to v7

• Modeling Guidance

• Recent Work

• Current & Planned Work

• Future Opportunities
Introduction & Background
AeroDyn – What Is It?

- Aerodynamics module for horizontal-axis wind turbines:
 - Coupled to FAST, MSC.ADAMS, SIMPACK, MotionSolve, FEDEM, etc. for aero-elastic simulation
- Originally developed by Windward Engineering (Craig Hansen, et al); now NREL
- Latest version:
 - v14.02.01c-bjj (July 2014)
 - Newer in progress
- User’s Guide:
- Theory Manual:
 - Moriarty & Hansen (2005)
Introduction & Background
Inputs, Outputs, States, & Parameters

AeroDyn

Continuous States:
• Induction in GDW

Discrete States:
• States in B-L dynamic stall

Constraint States:
• Induction in BEM

Parameters:
• Geometry
• Airfoil data
• Undisturbed wind inflow
• Air Density

Inputs:
• Turbine disp.
• Turbine velocities

Outputs:
• Aero. loads
• Wind

Introduction & Background
Inputs, Outputs, States, & Parameters

AeroDyn

Continuous States:
• Induction in GDW

Discrete States:
• States in B-L dynamic stall

Constraint States:
• Induction in BEM

Parameters:
• Geometry
• Airfoil data
• Undisturbed wind inflow
• Air Density

Inputs:
• Turbine disp.
• Turbine velocities

Outputs:
• Aero. loads
• Wind
Introduction & Background

User Inputs

- Undisturbed wind inflow from **InflowWind** submodule:
 - Uniform, but time-varying
 - Full-field turbulence
 - User-defined

- Aerodynamic submodel selection:
 - Quasi-steady, dynamic, or no wake
 - Steady or unsteady airfoil aerodynamics, including dynamic stall

- 2-D/3-D airfoil properties:
 - C_L, C_D, C_M (vs. AoA & Re) & dynamic-stall parameters
 - AirfoilPrep

- Tower influence & drag load properties

![Graph showing lift and drag coefficients vs. angle of attack]

S809 Airfoil Data @ Re=750M
Introduction & Background

Flowchart

- **Tower Shadow**
 - Tower shadow effect calculated
 - `AD_WindVelocityWithDisturbance`

- **Start calculation of the element aero forces** `ELEMFRC`

- **Equilibrium Wake**
 - Determine quasi-steady induced velocity `VIND`

- **Skewed Wake**
 - Apply skewed wake correction `VNMOD`
 - **Tip Loss**
 - Determine tip loss `GetTipLoss`
 - **Hub Loss**
 - Determine hub loss `GetPrandtlLoss`

- **Dynamic Wake**
 - Determine induced velocity `VINDINF`

- **No Wake**
 - **Dynamic Stall**
 - **No Dynamic Stall**
 - Calculate aerodynamic forces and pitching moment `ELEMFRC`
 - Determine the static lift, drag and pitching moment coefficients `CLCD`
 - Determine angle of attack based on all blade and wind velocities `ELEMFRC`
Undisturbed Wind Inflow

- Undisturbed wind inflow is set by AeroDyn’s InflowWind submodule, supporting:
 - Uniform, but time-varying
 - Full-field (FF) turbulence (TurbSim, Bladed, WAsP Engineering*)
 - User-defined*

- FF turbulence approximations:
 - Taylor’s frozen turbulence hypothesis used to march FF grids along the $+X$ axis of the inertia frame at mean hub-height wind speed
 - Requires wind stationarity
 - Mistreatment of horizontal or vertical mean flow angles:
 - Use nacelle-yaw instead of wind direction to model yaw error
 - Use only small vertical mean flow angles

*Available in FAST v7, but not yet in v8
Wake Modeling

Blade-Element / Momentum (BEM)

- Blades discretized into elements
- Momentum balance in annuli:
 - Linear \rightarrow axial induction (a)
 - Angular \rightarrow tangential induction (a')
 - Implemented per element per blade
 - Nonlinear solve requires iteration
- Blade-element loads from airfoil data:
 - Drag terms can optionally be used in induction calculation
- Limitations to theory:
 - No interaction between annuli (2-D only) (3D effects from AirfoilPrep)
 - Instantaneous reaction of wake to loading changes
 - Needs corrections for high induction, tip & hub losses, & skewed flow
 - Despite these, BEM is applied in many conditions
Wake Modeling
BEM – Glauert Correction

- Momentum balance invalid for high induction ($a > \sim 0.4$):
 - Glauert correction implemented

Wilson et al. (1976)

Wake States
Wake Modeling
BEM – Tip & Hub losses

- **Blade tip-loss correction:**
 - Models loss of lift at the blade tip:
 - Important for finite number of blades
 - Prandtl model
 - Xu & Sankar (2002):
 - Empirical correction to Prandtl using CFD of NREL Phase VI (may not apply to other turbines)

- **Blade root-loss correction:**
 - Prandtl model only
Wake Modeling
BEM – Skewed Wake

- Rotor yaw error or tilt leads to crossflow & nonaxisymmetric wake
- Skewed wake corrections derive a local a from the rotor-averaged a based on the local azimuth & radial position
- AeroDyn applies the correction to the local a after induction iteration

Free-Vortex Wake Calculation of a 30°-Yawing Event

Leishman (2001)
Wake Modeling
Generalized Dynamic Wake (GDW)

- Transient loading leads to a dynamic wake:
 - Gusts
 - Pitch control
 - Skewing flow
- GDW models the time- & spatial-varying induction across the rotor
- **AeroDyn** GDW model based on Peters, Boyd, & He (1989):
 - Induced flow at the rotor expressed as Fourier series in the radial & azimuthal directions:
 - 10 flow states considered
 - ODEs relating induced flow to rotor loading in state-space form
 - Time-integration using ABM4 scheme:
 - Initialized with 1 s of BEM
 - Tip losses & skewed wake automatically modeled with enough states
Wake Modeling
GDW – Limitations

- Limitations to GDW theory:
 - Uniform inflow (i.e. no or very low turbulence)
 - Constant rotor speed
 - Induced velocity << mean wind speed:
 - Unstable below rated power
 - Automatically disabled below 8 m/s
 - No tangential induction:
 - Uses BEM
 - 33 flow states needed to accurately model tip losses
 - Like BEM, GDW uses airfoil data
 - Despite these, recommend use whenever possible
Unsteady Airfoil Aerodynamics

- Dynamically stalled flow field:
 - Static stall dynamically exceeded
 - \(C_N, C_T, C_M \) transiently amplified
 - Flow hysteresis
 - Produced by even slight yaw & turbulence

- Beddoes-Leishman model (1989):
 - A semi-empirical model
 - 3 submodels:
 - Unsteady attached flow
 - Trailing-edge flow separation
 - Dynamic stall & vorticity advection
 - Semi-empirical airfoil-dependent parameters derived from static data
 - Applicable for operational conditions, not in deep stall

- AeroDyn adds after induction calculations
Tower Influence & Drag Load

• Downwind tower-shadow model:
 – Augments undisturbed wind
 – Simple user-tailored shape from:
 • Reference point
 • Velocity deficit
 • Wake width

• Upwind tower-influence model:
 – Augments undisturbed wind
 – Based on the potential flow solution around a cylinder
 – Doesn’t move with the tower

• Tower drag model:
 – Drag load @ each tower node proportional to square of undisturbed relative wind speed
Aerodynamic Features of FAST v8 Compared to v7

- This workshop will apply **FAST v8**
- All new features are being added to the new framework
- Until all features of v7 are included in v8, both will be supported

<table>
<thead>
<tr>
<th>FAST Features</th>
<th>v7.02</th>
<th>v8.08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quasi-steady or dynamic wake</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Steady or unsteady airfoil aerodynamics</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Tower shadow for downwind rotors</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Tower influence for upwind rotors</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Tower drag loading</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Tail-fin aerodynamic loading</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>"Hub-height", TurbSim, and Bladed wind file formats</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Other wind formats</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Aeroacoustics (noise)</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Modeling Guidance

• **Time step:**
 - $\text{DTAero} = 200$ azimuth steps per revolution

• **Blade & tower discretization:**
 - $\text{TwrNodes} \sim 20$ (in *ElastoDyn*)
 - Tower discretization in *ElastoDyn* is currently used by *AeroDyn*
 - $\text{BldNodes} \sim 20$
 - Blade discretization in *AeroDyn* is currently used by *ElastoDyn*:
 - Nodes are located at centers of elements

• **Airfoil data must often be “tuned” to match measurements**
Modeling Guidance (cont)

• To model an operational rotor set:
 – Below rated:
 • StallMod = BEDDOES – Enable dynamic stall
 • InfModel = EQUIL – Enable BEM
 – Above rated:
 • StallMod = BEDDOES – Enable dynamic stall
 • InfModel = DYNIN – Enable GDW

• To model an idling/parked rotor set:
 – StallMod = STEADY – Disable dynamic stall
 – IndModel = NONE – Disable wake

• When using FF turbulence, use nacelle-yaw instead of wind direction to model yaw error & use small vertical mean flow angle
Recent Work

• Changes in v14.02:
 – Converted AeroDyn to new FAST framework (for v8)
 – Added tower drag loading

• Interfaced FAST/AeroDyn to OpenFOAM for array modeling:
 – SOWFA – Simulator for Wind Farm Applications
 – OpenFOAM is a free, open-source, parallel, finite-volume, CFD toolbox
 – OpenFOAM computes inflow wind, wake, & array effects:
 • Replaces TurbSim & AeroDyn’s wake calculation
 – AeroDyn returns blade aero. forces to OpenFOAM & FAST:
 • Body forces applied to CFD flow field using actuator-line approach
 – Capable of multiple turbines with aero-elastics

Example SOWFA Simulation
Current & Planned Work

• **InflowWind:**
 – Convert from an **AeroDyn** submodule to a core **FAST** module, with separate input files & source code
 – Support simple steady uniform wind inputs
 – Support **WAsP Engineering**\(^*\) FF turbulence format
 – Support arbitrary mean wind direction for FF turbulence formats
 – Support **TurbSim** coherent turbulence files\(^*\)
 – Support user-defined wind option\(^*\)
 – Add more wind outputs (multiple locations)

\(^*\)Available in **FAST** v7, but not yet in v8
Current & Planned Work (cont)

• BEM:
 – Include updated algorithm with improved convergence (Ning)
 – Improve skewed-wake model
 – Wrap BEM iteration around all (wake, correction, dynamic-stall) calculations
 – Simplified dynamic wake (Oye’s time-filtered BEM)
 – Improve support for curved & swept blades

• GDW:
 – Initialize with single BEM solution
 – Resolve the numerical instability at low wind speeds
 – Improve for variable rotor speed
 – Add option to choose number & type of flow states
 – Include an inflow velocity filter (Peters & He)
 – Include wake curvature term
 – Revise algorithms per recommendation of Peters
Current & Planned Work (cont)

- Unsteady airfoil aerodynamics:
 - Add option to choose submodels
 - Revise algorithms per recommendation of Leishman

- Tower, nacelle, & hub influence & loading:
 - Improve tower-influence model based on current position of tower
 - Add nacelle & hub drag loading based on an airfoil table

- Wake & array effects:
 - Couple OpenFOAM with WRF (SOWFA)
 - Add a Dynamic Wake Meandering (DWM) model (with UMass)
Future Opportunities

- **Wake:**
 - Hub & tip loss corrections for BEM – e.g. Goldstein, Shen et al
 - Coned rotor corrections for BEM – e.g. Mikkelsen, Crawford
 - Frozen wake for linearization
 - Free-wake vortex method

- **Airfoil aerodynamics:**
 - Automate rotational augmentation calculation (as an alternative to AirfoilPrep)
 - Automate interpolation of airfoil data from input to analysis nodes
 - Unsteady – e.g. Galbraith et al, Munduate et al, ONERA
 - Unsteady models for active flow-control devices
 - Linearized dynamic stall – e.g. Hansen et al
Future Opportunities (cont)

- Develop improved empirically & CFD-derived corrections to engineering models (e.g. hub & tip loss, stall delay, precuved & preswept blades, highly coned rotors, winglets)
- Interface **FAST** with the ECN-developed **AWSM** free-wake vortex code
- Interface **FAST** with the DTU Wind-developed **HAWC2** aerodynamics module
- Develop an aeroacoustics module (to replace **FAST** v7’s noise module)
- Improved tail-fin aerodynamics
- Implement new physics for hydro-kinetic turbines

Aerodynamic Noise Sources

Wagner et al. (1996)
Questions?

Jason Jonkman, Ph.D.
+1 (303) 384 – 7026
jason.jonkman@nrel.gov