Overview of the HydroDyn Hydrodynamics Module

CREW/NREL Wind Turbine Design Codes Workshop

March 4, 2011
CU Campus – Boulder, CO

Jason Jonkman, Ph.D.
Senior Engineer, NREL
Outline

• Overview:
 – HydroDyn – What Is It?

• Monopiles:
 – Waves, Currents, & Hydrodynamic Loads
 – Foundation Modeling

• Floating Platforms:
 – Combining Computational Methodologies
 – Waves, Currents, & Hydrodynamic Loads
 – Mooring Systems

• Current & Planned Work & Future Opportunities
Overview
HydroDyn – What Is It?

• Yet-to-be documented hydrodynamics routines for offshore wind turbines:
 – Currently an undocumented feature in FAST & A2AD
 – Input settings contained in FAST’s platform input file
 – Source code included in FAST v7.00.01a-bjj
 – Interfaced to MSC.ADAMS via A2AD v13.00.00a-bjj

• Support-structure types:
 – Monopiles
 – Floating platforms

• Theory Manual:

• Verification:
 – Dissertation, Wind Energy
 – Participation in IEA Wind Task 23/30 OC3/OC4 Projects
Monopiles
Waves, Currents, & Hydrodynamic Loads

• Wave kinematics:
 – Linear regular (periodic)
 – Linear irregular (stochastic):
 • Pierson-Moskowitz, JONSWAP, or user-defined spectrum
 – With optional stretching:
 • Vertical, extrapolation, or Wheeler
 – Arbitrary choice of wave direction, but no spreading
 – Or routine to read in externally generated wave data:
 • Nonlinear wave option available

• Steady sea currents:
 – IEC-style sub-surface, near-surface, & depth-independent
 – Or user-defined

• Hydrodynamic loads:
 – Relative form of Morison’s equation
 – Calculated at each structural node along tower
Monopiles
Foundation Modeling

• No built-in foundation models currently available
• Models possible through user-defined routines
• Options for:
 – Apparent fixity
 – Coupled springs
 – Distributed springs
 – Linear or nonlinear (e.g., p-y)
• Simple models typically suitable for full-system analysis
Floating Platforms
Combining Computation Methodologies

Land-Based Wind Turbines
Characteristics:
- Flexible & dynamically active
- Controllable
- Nonlinear time-domain aero-servo-elastic analysis
Simulation Tools:
- FAST with AeroDyn
 - MSC.ADAMS with A2AD & AeroDyn

Offshore Floating Wind Turbines
Characteristics:
- Flexible & dynamically active
- Controllable
- Coupling between turbine & platform motions
- Nonlinear time-domain aero-hydro-servo-elastic analysis needed

Sea-Based Oil & Gas Platforms
Characteristics:
- Rigid & static
- Passive
- Linear frequency-domain hydrodynamic analysis
Simulation Tools:
- WAMIT

Simulation Development Approach:
- Start with FAST with AeroDyn & MSC.ADAMS with A2AD & AeroDyn
- Add support-platform DOFs
- Develop hydrodynamics module with interface to WAMIT
- Develop mooring-system module
Floating Platforms
Waves & Currents

• Wave kinematics:
 – Linear regular (periodic)
 – Linear irregular (stochastic):
 • Pierson-Moskowitz, JONSWAP, or user-defined spectrum
 – Arbitrary choice of wave direction, but no spreading

• Steady sea currents:
 – IEC-style sub-surface, near-surface, & depth-independent
 – Or user-defined
Floating Platforms
Hydrodynamic Loads

Hydrodynamic loads:
- Wave-body interaction with rigid platform
- Arbitrary platform geometry
- Linear frequency-domain radiation & diffraction solutions imported from WAMIT or equivalent:
 - Frequency-to-time domain conversion computed internally
- Radiation “memory effect” accounted for by direct time-domain convolution
- Linear hydrostatic restoring
- Applied as 6-component (lumped) load on platform at reference point
- 2nd order (drift) effects neglected
- Damping in surge, sway, roll, & pitch augmented with nonlinear viscous drag term from Morison’s equation:
 - Distributed along platform analysis nodes
Floating Platforms
Hydrodynamics Calculation Procedure

Frequency-Domain Radiation / Diffraction
Hydrodynamics Preprocessor (SWIM or WAMIT)

Time-Domain Hydrodynamics (HydroDyn)

- Box-Muller Method
- Inverse FFT
- Morison's Equation
- Platform Motions
- Incident-Wave Kinematics
- Wave Spectrum & Direction

- Restoring Matrix (Hydrostatic Problem)
- Damping Matrix (Radiation Problem)
- Added-Mass Matrix (Radiation Problem)

- Wave-Excitation Force (Diffraction Problem)
- Platform Geometry
- Seed for RNG

- Cosine Transform
- Time Convolution
- Sum Forces
- Memory Effect
- Infinite-Freq. Limit
- Radiation Kernel

- White Gaussian Noise
- Buoyancy Calculation
- Incident-Wave Excitation
- Viscous Drag
- Morison's Equation

- Frequency-Domain Radiation / Diffraction
- Hydrodynamics Preprocessor (SWIM or WAMIT)

- Platform Motions
- Incident-Wave Kinematics
- Wave Spectrum & Direction

- Platform Geometry
- Seed for RNG

- Cosine Transform
- Time Convolution
- Sum Forces
- Memory Effect
- Infinite-Freq. Limit
- Radiation Kernel

- White Gaussian Noise
- Buoyancy Calculation
- Incident-Wave Excitation
- Viscous Drag
- Morison's Equation
Floating Platforms
Mooring Systems – Overview

- Quasi-static mooring system module implemented within HydroDyn:
 - Solves catenary equations
 - Fairlead tensions applied as reaction forces on platform

- Accounts for:
 - Array of homogenous taut or catenary lines
 - Apparent weight of line in fluid
 - Elastic stretching
 - Seabed friction
 - Nonlinear geometric restoring

- Neglects:
 - Line bending stiffness
 - Mooring system inertia
 - Mooring system damping

Dutch Tri-Floater
Floating Platforms
Mooring Systems – Calculation Procedure

Quasi-Static Mooring-System Module (Calculations Shown for Each Line)

- Global-to-Local Transformation
- Fairlead Location Relative to Anchor \((x_F, z_F) \)
- Newton-Raphson Iteration to Find Fairlead Tension
 \[
 x_F = F(H_F, V_F, L, \omega, E_A, C_B) \\
 z_F = F(H_F, V_F, L, \omega, E_A)
 \]
- Fairlead Tension \((H_F, V_F) \)
- Compute Configuration of, & Tensions Within, Line
- Local-to-Global Transformation & Sum Tensions
- Compute Anchor Tension
- Configuration of, & Tensions Within, Line
 \[
 [x(s), z(s), T_c(s)]
 \]
Current & Planned Work & Future Opportunities

- Current & planned work:
 - Develop improved interface:
 • Make **HydroDyn**—including inputs—standalone, like **AeroDyn**
 - Write manual & publically release
 - Verify under IEA Wind Task 30 (OC4)
 - Validate through DeepCwind consortium:
 • 1/50th scale wind-wave tank testing & 1/3rd scale open-ocean testing
 - Add additional nonlinear effects:
 • Numerically improve how the stretched wave kinematics are interpolated at the free surface for monopiles
 • Add 2nd-order waves for monopiles (with UT-Austin)
 • Augment floater model with Morison’s equation for thin members (e.g., braces)
 • Add drift & sum-frequency loads for floating platforms
 - Extend to space-frame support structures (e.g., tripod, jacket)
 - Add dynamic mooring system module (& make it a standalone)
 - Support coupling to **OrcaFlex**

- Future opportunities:
 - Add stream function waves for monopiles
Questions?

Jason Jonkman, Ph.D.
+1 (303) 384 – 7026
jason.jonkman@nrel.gov