Overview of the AeroDyn Aerodynamics Module

Design Codes Workshop

September 23, 2010
NTNU – Trondheim, Norway

Jason Jonkman, Ph.D.
Senior Engineer, NREL
Outline

• Overview:
 – AeroDyn – What Is It?
 – Inputs
 – Outputs
 – Flowchart

• Wake Modeling:
 – Blade Element Momentum (BEM):
 • Tip & Hub Losses
 • Skewed Wake
 – Generalized Dynamic Wake (GDW)

• Dynamic Stall
• Tower Shadow
• Overhaul:
 – Reasons for Overhaul
 – Recent Work
 – Current & Planned Work
 – Future Opportunities
Overview
AeroDyn – What Is It?

• Wind turbine aerodynamics routines:
 – Not stand alone
 – Coupled to FAST, MSC.ADAMS, SIMPACK, etc. for aero-elastic simulation

• Developed by Windward Engineering (Craig Hansen, et al) & NREL

• Latest version:
 – v13.00.00a-bjj (March 2010)
 – Newer in progress

• User’s Guide:

• Theory Manual:
 – Moriarty & Hansen (2005)
Overview

Inputs

- Local airfoil position & motion from dynamics routines
- Wind flow field:
 - Full field turbulence (TurbSim)
 - Uniform, but time-varying
 - Measured
 - User-defined
- Tower shadow properties
- 2-D/3-D airfoil properties:
 - C_l, C_d, C_m (vs. α & Re) & dynamic stall constants (6)
 - AirfoilPrep
- User aerodynamics settings:
 - Dynamic or quasi-steady wake
 - Dynamic or static stall
Overview

Outputs

- All elements calculated by a single call to **AeroDyn**
- Elemental loads sent back to dynamics routines:
 - Forces & moments
- Element quantities to output file:
 - Each time step for any or all elements
 - Local wind speed
 - α, C_l, C_d, C_n, C_t, C_m
 - Local dynamic pressure, pitch angle
 - Induction factors – axial & tangential
 - Tangential & normal forces & pitching moments
 - Local Reynolds number
Overview

Flowchart

Positions, orientations, translational & rotational velocities for all elements

Aerodynamic forces and moments for all elements

ELEMFRC

Determine quasi-steady induced velocity V_{IND}

VIND

Apply skewed wake correction $VNMOD$

Skewed Wake

Determine angle of attack based on all blade and wind velocities $ELEMFRC$

AD_CalculateLoads

Calculate aerodynamic forces and pitching moment $ELEMFRC$

Tip Loss

Determine tip loss $GetTipLoss$

Hub Loss

Determine hub loss $GetPrandtlLoss$

Dynamic Wake

Determine induced velocity V_{INDINF}

Tower Shadow

Tower shadow effect calculated $AD_WindVelocityWithDisturbance$

Start calculation of the element aero forces $ELEMFRC$

Equilibrium Wake

Determine the dynamic lift, drag and pitching moment coefficients $BEDDOES$

Dynamic Stall

Determine the static lift, drag and pitching moment coefficients $CLCD$

No Dynamic Stall

Determine angle of attack based on all blade and wind velocities $ELEMFRC$

No Wake

Calculate tower shadow effect $AD_WindVelocityWithDisturbance$

Skewed Wake

Determine the dynamic lift, drag and pitching moment coefficients $BEDDOES$

No Dynamic Stall

Determine the static lift, drag and pitching moment coefficients $CLCD$
Wake Modeling
Blade Element Momentum (BEM)

- Blades broken into N elements
- Rotor plane broken into N annuli
- Momentum balance in annuli:
 - Done per blade
- Airfoil data used
- Drag terms can be used in calc. of induced velocities:
 - Axial & tangential (undocumented)
- Limitations to theory:
 - No interaction between annuli (2-D only)
 - Theory only valid for uniform circulation (uniform induction)
 - Instantaneous reaction of wake to loading changes
 - Invalid when $a > \sim 0.4$ (Glauert correction implemented)
 - Despite these, BEM is applied in many conditions

Burton et al. (2001)
Wake Modeling
BEM – Tip & Hub losses

• Tip loss correction:
 – Prandtl (1919) / Glauert (1935):
 • Non-expanding wake
 • Large error < 3 blades
 • “Linearized” version
 \[dT = 4\pi \rho V^2 (1-a) aF dr \]
 \[dQ = 4\pi r^3 \rho \Omega (1-a) a' F dr \]
 – Xu & Sankar (2002):
 • Empirical correction to Prandtl using CFD of NREL Phase VI

• Blade root loss:
 – Prandtl only

\[
F = \frac{2}{\pi} \cos^{-1}\left(e^{-\frac{N}{2} \frac{r-R}{r} \sqrt{1+\lambda^2}} \right)
\]
Wake Modeling
BEM – Skewed wake

• Skewed wake correction:
 – Coleman (1945):

 \[a_{skew} = a \left[1 + K \frac{r}{R} \sin \psi \right] \]

 – AeroDyn:

 \[a_{skew} = a \left[1 + \frac{15\pi}{32} \frac{r}{R} \sqrt{\frac{1 - \sin \gamma}{1 + \sin \gamma}} \left(\sin \delta \sin \psi + \cos \delta \cos \psi \right) \right] \]

 – Infinite number of blades
 – Non-expanding wake
 – Applied after induction iteration
 – Does not affect \(a' \)
Wake Modeling

Generalized Dynamic Wake (GDW)

- Peters, Boyd, & He (1989):
 - Kinner’s (1937) solution to Laplace’s equation for pressure distribution:
 \[
 p(v, \eta, \psi) = \sum_{m=0}^{\infty} \sum_{n=m+1,m+3,...} \hat{P}_n^m(v) \hat{Q}_n^m(i \eta) \left[\epsilon_n^m(i) \cos(m \psi) + \epsilon_n^m(i) \sin(m \psi) \right]
 \]
 - Unsteady Euler equations used to calculate induced velocities:
 \[
 M \left[\frac{dw}{dt} \right] + L^{-1}[w] = p
 \]
 - 10 flows states or harmonics modeled (4% error for light loading)
 - Finite number of blades
 - Unsteady wake response
 - Tip losses & skewed wake automatically modeled
Wake Modeling
GDW – Limitations

- Steady & uniform inflow (i.e. no or very low turbulence)
- Induced velocity \ll mean wind speed:
 - Unstable below 8 m/s
- No tangential induction:
 - Uses BEM
- 33 states needed to accurately model tip losses
- Despite these, recommend use whenever possible

Burton et al. (2001)
Dynamic Stall

- Dynamically stalled flow field:
 - Static stall dynamically exceeded
 - C_n, C_t, C_m transiently amplified
 - Produced by even slight yaw
- Beddoes-Leishman (1989):
 - Semi-empirical model
 - Six input parameters per airfoil derived from static data
 - Four time constants empirically tuned to S809 airfoil (Pierce & Hansen, 1995)
- **AeroDyn** adds after induction calculations
Tower Shadow

- **Simple parabolic shape:**
 - Reference point
 - Velocity deficit
 - Wake width
Overhaul
Reasons for Overhaul

• Trouble developing, maintaining, & using AeroDyn
• Common request from users
• Desire to have improved:
 – Functionality
 – Usability
 – Code readability
• Eliminate problems
• Make it easier to include additional aerodynamic theories
• Develop a standardized & streamlined interface to structural dynamic analysis programs
• Important because proper aerodynamic modeling is critical for accurate performance, loads, & stability analyses
Overhaul
Recent Work (Changes in v13.00.00)

• New interface between AeroDyn & structural codes has been implemented (all data exchanged in a single call per coupling step)
• Tower influence model documented in the theory manual has been implemented (as a hidden feature)
• Wind inflow has been removed from inside AeroDyn & made into a separate module
• Linked with NWTC Subroutine Library
• Uses metric system only (option for English units has been removed)
Overhaul
Recent Work (Wind Inflow Module in v13.00.00)

- All wind-inflow routines & variables are contained in a separate module with clear interface
- Can read TurbSim’s binary full-field “.bts” & tower “.twr” files
- Full-field wind files are relative to the ground, not the turbine hub-height
- Can be used outside of AeroDyn, e.g. the module has been made into a MATLAB mex function (allows easy access to the wind file data)
Overhaul
Current & Planned Work – Theory / Structure

• BEM – Include updated algorithm from WT_Perf

• GDW:
 – Initialize with single BEM solution
 – Add option to choose number & type of flow states
 – Include turbulent wake state correction
 – Include a filtered velocity based on the work of Peters & He

• Dynamic stall – Develop state-space-based version

• Tower influence & loading:
 – Improve tower-influence model based on current position of tower
 – Add tower-loading model

• Aeroacoustics – Develop standalone aeroacoustics module (to replace FAST’s noise module)

• Wind inflow module – Add ability to read in WaSP Engineering output (e.g., Mann turbulence)
Overhaul
Current & Planned Work – Theory / Structure (cont)

• General:
 – Improve modularization:
 • e.g.: Create separate modules for rotational augmentation, induction, element loading, & dynamic stall
 – Wrap BEM iteration around all (wake, correction, dynamic-stall) calculations
 – Implement model-specific time-integration schemes
 – Add option to automate rotational augmentation calculation (replace AirfoilPrep)
 – Add option to interpolate airfoil data from input stations to analysis nodes
Overhaul
Future Opportunities – Add New Models

• Hub & tip loss corrections for BEM:
 – e.g.: Shen et al (2005)
• Coned rotor corrections for BEM:
 – e.g.: Mikkelson (2001) & Crawford (2006)
• Dynamic stall:
• Linearization of wake & dynamic stall:
 – Frozen BEM & GDW
• Vortex wake methods (prescribed & free)
• Nacelle & hub influence & loading
• Influence of large & low-frequency floating platform motions on wake
• Wake tracking
• Improved tail-fin aerodynamics
• Implement new physics for hydro-kinetic turbines
Questions?

Jason Jonkman, Ph.D.
+1 (303) 384 – 7026
jason.jonkman@nrel.gov