Dear all,
I am modelling the OC3 hywind spar tower in Abaqus. These are the laods I am transferring to the Abaqus model:
1) Tower top forces and moments (3 YawBrFp and 3 YawBrMp)
2) I have outputted 19 tower element forces (FrcFGagT) at TwrGagNd 19,18,17......,1. these would be applied to corresponding element sets in the abaqus tower.
For (2) above only the Portion of FrcFGagT associated with element J is used. This is computed as TmpVec2*p%DHNodes(J) in elastodyn.
where TmpVec2 = FTTower(:,J)  p%MassT(J)*( p%Gravity*m%CoordSys%z2 + LinAccET(:,J) )
Questions:
1) I would want to get the aerodynamic force contribution to FrcFGagT of each element in item 2 so I can apply these force as a surface traction force after removing it from FrcFGagT. How can this be done?
2)If Question1 is possible, then I can apply the remaining portion of FrcFgagT as body forces?
3)Why is the FrcFGagT of tower node 20 not the same as YawBrFp and node 1 not the same as TwrBsF? (given TwrNodes = 20).
Regards
Salem
OC3hywind tower forces
Moderator: Bonnie.Jonkman

 Posts: 5
 Joined: Fri Feb 16, 2018 8:15 am
 Organization: University of Aberdeen
 Location: United Kingdom

 Posts: 4056
 Joined: Thu Nov 03, 2005 4:38 pm
 Location: Boulder, CO
 Contact:
Re: OC3hywind tower forces
Dear Salem,
My understanding is that:
My understanding is that:
 You've changed the source code to output FrcFGagT = TmpVec2*p%DHNodes(J) locally for each tower node, without integrating (summing) the contributions from all nodes / elements along the tower.
 FrcFGagT = TmpVec2*p%DHNodes(J) is the local applied loads (aerodynamic) and gravitational loads minus the inertia loads for a given tower element.
 1/2) The aerodynamic applied load is already included in the load output. FAST does not directly model the surface tractions, but rather models the aerodynamics with actuator lines i.e. the force per unit length is lumped at the tower centerline. I'm not sure why you owuld want to model the aerodynamic applied loads as surface tractions, but model the gravitational and inertia loads lumped at the tower centerline.
3) Based on my understanding, FrcFGagT by your definition is just the local contribution to the reaction load for a given tower element, not the integrated contribution of all tower loads along the load path, so, FrcFGagT should not equal YawBrFp at the tower top nor TwrBsF at the tower base.
Jason Jonkman, Ph.D.
Senior Engineer  National Wind Technology Center (NWTC)
National Renewable Energy Laboratory (NREL)
15013 Denver West Parkway  Golden, CO 80401
+1 (303) 384 – 7026  Fax: +1 (303) 384 – 6901
nwtc.nrel.gov
Senior Engineer  National Wind Technology Center (NWTC)
National Renewable Energy Laboratory (NREL)
15013 Denver West Parkway  Golden, CO 80401
+1 (303) 384 – 7026  Fax: +1 (303) 384 – 6901
nwtc.nrel.gov

 Posts: 5
 Joined: Fri Feb 16, 2018 8:15 am
 Organization: University of Aberdeen
 Location: United Kingdom
Re: OC3hywind tower forces
Dear Jason
Many thanks for responding. Let me throw more light on what I have done.
1) I didn't change the source code. I outputted TwHtFL for nodes (1 to 20) and assumed the contribution of each portion to be (TwHtFL_for node n)  (TwHtFL_for node n+1).
for example node 19 the contribution is taken as FAST output of TwHtFL for node 19  TwHtFL for node 20.
2) In response to your point (3), let me rephrase: why is FAST output TwHtFL for node 20 greater than YawBrF? (Is node 20 not at same location as the point for YawBrF?)
Let me restate my problem as well. How do I obtain just the tower aerodynamic loads plus the inertial loads on the tower?
Thank you.
Salem
Many thanks for responding. Let me throw more light on what I have done.
1) I didn't change the source code. I outputted TwHtFL for nodes (1 to 20) and assumed the contribution of each portion to be (TwHtFL_for node n)  (TwHtFL_for node n+1).
for example node 19 the contribution is taken as FAST output of TwHtFL for node 19  TwHtFL for node 20.
2) In response to your point (3), let me rephrase: why is FAST output TwHtFL for node 20 greater than YawBrF? (Is node 20 not at same location as the point for YawBrF?)
Let me restate my problem as well. How do I obtain just the tower aerodynamic loads plus the inertial loads on the tower?
Thank you.
Salem

 Posts: 4056
 Joined: Thu Nov 03, 2005 4:38 pm
 Location: Boulder, CO
 Contact:
Re: OC3hywind tower forces
Dear Salem,
OK, I had misunderstood your original forum post.
The tower analysis nodes in ElastoDyn are at the centers of the tower elements, so, node 20 (out of 20 total tower elements) is slightly below (i.e., half an element below) the yaw bearing. As a result, I would expect slightly larger loads at node 20 than at the yaw bearing. Is this what you are seeing?
I agree with your approach of calculating the elementbyelement contribution of the applied aerodynamic load and gravitational/inertial loads along the tower. You can also output the aerodynamic applied loads on the tower from AeroDyn outputs. But there is no direct way to output only the gravitational/inertial loads from the ElastoDyn module (without modifying the source code).
Best regards,
OK, I had misunderstood your original forum post.
The tower analysis nodes in ElastoDyn are at the centers of the tower elements, so, node 20 (out of 20 total tower elements) is slightly below (i.e., half an element below) the yaw bearing. As a result, I would expect slightly larger loads at node 20 than at the yaw bearing. Is this what you are seeing?
I agree with your approach of calculating the elementbyelement contribution of the applied aerodynamic load and gravitational/inertial loads along the tower. You can also output the aerodynamic applied loads on the tower from AeroDyn outputs. But there is no direct way to output only the gravitational/inertial loads from the ElastoDyn module (without modifying the source code).
Best regards,
Jason Jonkman, Ph.D.
Senior Engineer  National Wind Technology Center (NWTC)
National Renewable Energy Laboratory (NREL)
15013 Denver West Parkway  Golden, CO 80401
+1 (303) 384 – 7026  Fax: +1 (303) 384 – 6901
nwtc.nrel.gov
Senior Engineer  National Wind Technology Center (NWTC)
National Renewable Energy Laboratory (NREL)
15013 Denver West Parkway  Golden, CO 80401
+1 (303) 384 – 7026  Fax: +1 (303) 384 – 6901
nwtc.nrel.gov

 Posts: 5
 Joined: Fri Feb 16, 2018 8:15 am
 Organization: University of Aberdeen
 Location: United Kingdom
Re: OC3hywind tower forces
Dear Jason
1) If I understand correctly the location of strain gage 20 i.e. node 20 from the tower base would be 77.6  (77.6/20)/2 ? And the location of strain gage 1 would be (77.6/20)/2? What is the distance between two strain gages (Is this contant)?
where:
flexible tower height=77.6 m
number of tower nodes =20
2) Are the nodal locations described in (1) the same as those used to output aerodyn aerodynamic forces on the tower?
Don't know if these are practical
3)Is there a way to express LinAccET (is LinAccET = TwHtALyt ?) as a function of just tower height using the discrete values of TwHtALyt outputted by FAST. In other words would interpolating these discrete values to obtain acceleration at any point in the tower be valid? This is so I can compute inertia forces at any chosen point in the tower using p%MassT(J)*( p%Gravity*m%CoordSys%z2 + LinAccET(:,J) ) ?
4) Can I also interpolate the FAST output V_rel = u%InflowOnTower(:,j)  u%TowerMotion%TranslationDisp(:,j) which is relative wind speed at tower node
so as to compute the aerodynamic force at any point on the tower using the discrete tower V_rel outputted by aerodyn?
Many thanks.
Salem
1) If I understand correctly the location of strain gage 20 i.e. node 20 from the tower base would be 77.6  (77.6/20)/2 ? And the location of strain gage 1 would be (77.6/20)/2? What is the distance between two strain gages (Is this contant)?
where:
flexible tower height=77.6 m
number of tower nodes =20
2) Are the nodal locations described in (1) the same as those used to output aerodyn aerodynamic forces on the tower?
Don't know if these are practical
3)Is there a way to express LinAccET (is LinAccET = TwHtALyt ?) as a function of just tower height using the discrete values of TwHtALyt outputted by FAST. In other words would interpolating these discrete values to obtain acceleration at any point in the tower be valid? This is so I can compute inertia forces at any chosen point in the tower using p%MassT(J)*( p%Gravity*m%CoordSys%z2 + LinAccET(:,J) ) ?
4) Can I also interpolate the FAST output V_rel = u%InflowOnTower(:,j)  u%TowerMotion%TranslationDisp(:,j) which is relative wind speed at tower node
so as to compute the aerodynamic force at any point on the tower using the discrete tower V_rel outputted by aerodyn?
Many thanks.
Salem

 Posts: 4056
 Joined: Thu Nov 03, 2005 4:38 pm
 Location: Boulder, CO
 Contact:
Re: OC3hywind tower forces
Dear Salem,
Here are my answers to your questions:
1) Your understanding is correct. The distance between tower analysis nodes is 77.6/20 in your example.
2) Not necessarily. AeroDyn has its own tower discretization and the AeroDyn outputs are associated with this discretization. The locations are only identical if the nodal locations in ElastoDyn and AeroDyn are identical. Within FAST / OpenFAST, the aerodynamic loads at the AeroDyn nodes are transferred to ElastoDyn nodes using meshtomesh mapping, which handles disparate meshes.
3) Yes, TwHtAL = LinAccET, with an appropriate coordinate transformation (LinAccET is in global, TwHtAL is expressed in the local tower coordinate system). And, yes, you could interpolate this acceleration to get the acceleration and inertia forces at any location along the tower.
4) Yes, I agree, but the equation for V_rel should use u%TowerMotion%TranslationVel(:,J) rather than u%TowerMotion%TranslationDisp(:,j). (This bug was fixed in OpenFAST a while ago.)
Best regards,
Here are my answers to your questions:
1) Your understanding is correct. The distance between tower analysis nodes is 77.6/20 in your example.
2) Not necessarily. AeroDyn has its own tower discretization and the AeroDyn outputs are associated with this discretization. The locations are only identical if the nodal locations in ElastoDyn and AeroDyn are identical. Within FAST / OpenFAST, the aerodynamic loads at the AeroDyn nodes are transferred to ElastoDyn nodes using meshtomesh mapping, which handles disparate meshes.
3) Yes, TwHtAL = LinAccET, with an appropriate coordinate transformation (LinAccET is in global, TwHtAL is expressed in the local tower coordinate system). And, yes, you could interpolate this acceleration to get the acceleration and inertia forces at any location along the tower.
4) Yes, I agree, but the equation for V_rel should use u%TowerMotion%TranslationVel(:,J) rather than u%TowerMotion%TranslationDisp(:,j). (This bug was fixed in OpenFAST a while ago.)
Best regards,
Jason Jonkman, Ph.D.
Senior Engineer  National Wind Technology Center (NWTC)
National Renewable Energy Laboratory (NREL)
15013 Denver West Parkway  Golden, CO 80401
+1 (303) 384 – 7026  Fax: +1 (303) 384 – 6901
nwtc.nrel.gov
Senior Engineer  National Wind Technology Center (NWTC)
National Renewable Energy Laboratory (NREL)
15013 Denver West Parkway  Golden, CO 80401
+1 (303) 384 – 7026  Fax: +1 (303) 384 – 6901
nwtc.nrel.gov

 Posts: 5
 Joined: Fri Feb 16, 2018 8:15 am
 Organization: University of Aberdeen
 Location: United Kingdom
Re: OC3hywind tower forces
Dear Jason
Thank you very much for your responses, they've been very helpful. Finally what interpolation schemes are employed by elastodyn in the area suggested above and any suggestions as to the best way of achieving such interpolation?
Regards
Salem
Thank you very much for your responses, they've been very helpful. Finally what interpolation schemes are employed by elastodyn in the area suggested above and any suggestions as to the best way of achieving such interpolation?
Regards
Salem

 Posts: 4056
 Joined: Thu Nov 03, 2005 4:38 pm
 Location: Boulder, CO
 Contact:
Re: OC3hywind tower forces
Dear Salem,
I'm not sure I understand your question because you are proposing to add the interpolation not currently found in ElastoDyn. Nevertheless, I would assume a simple linear interpolation would suffice if the tower is discretized sufficiently.
Best regards,
I'm not sure I understand your question because you are proposing to add the interpolation not currently found in ElastoDyn. Nevertheless, I would assume a simple linear interpolation would suffice if the tower is discretized sufficiently.
Best regards,
Jason Jonkman, Ph.D.
Senior Engineer  National Wind Technology Center (NWTC)
National Renewable Energy Laboratory (NREL)
15013 Denver West Parkway  Golden, CO 80401
+1 (303) 384 – 7026  Fax: +1 (303) 384 – 6901
nwtc.nrel.gov
Senior Engineer  National Wind Technology Center (NWTC)
National Renewable Energy Laboratory (NREL)
15013 Denver West Parkway  Golden, CO 80401
+1 (303) 384 – 7026  Fax: +1 (303) 384 – 6901
nwtc.nrel.gov

 Posts: 5
 Joined: Fri Feb 16, 2018 8:15 am
 Organization: University of Aberdeen
 Location: United Kingdom
Re: OC3hywind tower forces
Dear Jason
Many thanks for your help.
Regards
Salem
Many thanks for your help.
Regards
Salem
Return to “Structural Analysis”
Who is online
Users browsing this forum: No registered users and 1 guest