Towards Identifying Contribution of Wake Turbulence on Inflow Turbulence Noise from Wind Turbines

Bharat Agrawal
Aaron Rosenberg
Dr. Anupam Sharma

Department of Aerospace Engineering
Iowa State University

May 19, 2014

HAWT: Aerodynamic Noise Sources

- Various aero noise sources:
 - Turbulence interaction with blades
 - Unsteady force \rightarrow noise
- Focus on inflow turbulence here
 - Important for low-frequency noise
Motivation

- Lighthill’s acoustic analogy – unsteady force \rightarrow noise source

$$\frac{\partial^2 \rho'}{\partial t^2} - c_0^2 \frac{\partial^2 \rho'}{\partial x_i^2} = \frac{\partial m}{\partial t} - \frac{\partial f_i}{\partial x_i} + \frac{\partial^2}{\partial x_i \partial x_j} \left(p_{ij} + \rho u_i u_j - \rho' c_0^2 \delta_{ij} \right),$$

- Sources of inflow turbulence
 - **Atmospheric**: buoyancy & shear
 - **Turbine wakes**: shear

- Role of wake turbulence in producing noise is unclear
 - possibly pronounced under \textit{stable} conditions
 - potential for OAM (other amplitude modulation)
Envisioned Prediction Approach

Aero: LES (SOWFA)

- **SOWFA calculations**
 - Sample wake (+atmospheric) turbulence statistics
 - Prescribe as inflow BC to aeroacoustic simulation

- **Simulate outboard section of turbine blade**
 - Ignore rotational effects, assume periodicity in span
 - Prescribe inflow turbulence (synthesized?)
 - LES + model → noise resulting from inflow turbulence-blade interaction

Acoustics: LES (pisoFoam)

Inflow (turbulent): from SOWFA + synthesis

Blade outboard region
Simplified (model) Problems for now

• **I:** Farm Aero
 – SOWFA calculations ... no ABL
 – Time history probes at hub height
 → Turbulence length scale + intensity
 – Lowson/Amiet noise model → far-field noise

• **II:** Rod-Airfoil interaction
 – Rod wake simulates upstream wake turbulence
 – Compute airfoil response (loads/noise) using LES
 – Acoustics analogies → far-field noise
I: FARM AERO (SOWFA)
Hypothetical Wind Farm

- Wind farm layout
 - Turbines under: no-wake, partial-wake, & full-wake

- Aero calculations using SOWFA

- Wake turbulence data extracted at hub height

D = 126 m, Probes Located at Hub Height 5 m upstream
Aerodynamic Results

- **SOWFA**: pisoFoam + actuator line model
- **At the moment**: No ABL \rightarrow first row of turbines have no inflow turbulence

 Iso-vorticity surfaces

 Vorticity magnitude contours
Wake Turbulence Information

- Time history (streamwise velocity component)

- Auto-correlation: \(R_{uu}(\tau) = \frac{\langle u(t)u(t + \tau) \rangle}{\langle u^2(t) \rangle} \); where \(u = U - \langle U \rangle \)

- Integral time scale: \(T = \int_0^\infty R_{uu}(\tau) \, d\tau \)

- Integral length scale ... use Taylor’s frozen turbulence hypothesis: \(l_t = \bar{U} \times T \)
Inflow Turbulence Noise Model

• Due to Lowson ... extension of Amiet’s theory

\[
\begin{align*}
\text{SPL}_{1/3}^H &= 10 \log_{10} \left[\left(\frac{\rho_0 c_0}{2} \right)^2 \frac{L}{r_o^2} l_t M^3 I^2 U^2 \frac{K^3}{(1 + K^2)^{-7/3}} \right] + 58.4 \\
l_t &\rightarrow \text{integral length} \\
I &\rightarrow \text{turbulence intensity} \\
U &\rightarrow \text{flow speed} \\
L &\rightarrow \text{airfoil span} \\
K &= \frac{\omega c}{(2U_{rel})} \rightarrow \text{wavenumber based on semichord } c/2
\end{align*}
\]

• Correction for low frequencies

\[
\text{SPL}_{1/3}^L = \text{SPL}_{1/3}^H + 10 \log_{10} \left(\frac{10 S^2 M K^2}{(1 - M^2)} \right) \\
\text{low freq corr}
\]

... \(S^2 \) is the compressible Sears function
Noise Results (preliminary)

- Wake turbulence: \(TI \sim 5\text{-}10\%; \) length scale \(\sim 2\text{-}10 \text{ m} \)
- Lowson’s model (in FAST) used to assess noise at IEC std. observer location
- Noise predictions for a few representative values of TI & length scales

- Perceptible impact on low-frequency noise
- However, the question of relative importance of wake/atmospheric turbulence remains
II: ROD-AIRFOIL
Model Problem: Rod-Airfoil

- Rod \rightarrow turbulence generator (mimic inflow turbulence)
- Wake-airfoil interaction \rightarrow noise
- Rod wake comprises of:
 - Quasi-periodic vortex shedding \rightarrow tone noise
 - Vortex structure breakdown \rightarrow turbulence \rightarrow broadband noise
Rod Airfoil Problem Setup

- Experiment by Jacob et al. [1]

- Setup:
 - Rod airfoil in tandem
 - Airfoil (NACA 0012; \(c = 0.1\) m)
 - Rod (dia, \(d = 0.01\) m)
 - Separation, \(l = 0.1\) m

- Flow Reynolds number:
 - \(Re_d = 48,000\) (\(Re_c = 480,000\))

- Rod (cylinder) vortex shedding
 - Wake shedding \(St = 0.19\)

Large Eddy Simulations

- Two flow solvers benchmarked against experiments
 - Compressible flow solver *Charles* by Cascade Tech.
 - Incompressible flow solver *pisoFoam* from OpenFoam

- Grid refined to resolve
 - Rod & airfoil boundary layers
 - Gap region between rod and airfoil

- Flow initialized by interpolating a 2-D solution
Flow Comparisons

- Streamwise velocity in wake
 - at $x/c = -0.255$
 - Mean and fluctuation (rms)

\[\bar{u}, \quad u_{rms} \]
Near Field Velocity Spectral Density, $S_{uu}(\omega)$

PSD: using Wiener-Khinchin theorem:

$$S_{uu}(\omega) = \frac{\delta t}{N} \left| \sum_{n=1}^{N} u_n \exp(-i \omega n \delta t) \right|^2$$
Far-field Noise Prediction

Acoustic analogies to predict far-field noise

• Compressible flow data:
 – Ffowcs Williams-Hawkings analogy (ignore volume integral)

 \[4\pi |x| p'(x, t) = \frac{x_i}{c|x|} \frac{\partial}{\partial t} \int \left[p'n_i + \rho u_i (u_j - U_j) n_j \right] d\Sigma \]

 \[+ \frac{\partial}{\partial t} \int \left[\rho_0 u_i + \rho' (u_i - U_i) \right] n_i d\Sigma. \]

• Incompressible flow data (*no density perturbation*):
 – Amiet’s theory
 – Lighthill stress tensor + scattering problem
 • Euler equations, Boundary value, etc.
Amiet’s Theory

- Subtract surface pressure: pressure – suction sides to calculate loading → Delta P

- Compute cross PSD of loading on airfoil camber surface

\[S_{QQ}(x_1, x_2, y_1, y_2, \omega) = \lim_{T \to \infty} \left\{ \frac{\pi}{T} E \left[\Delta \hat{P}_T^*(x_1, y_1, \omega) \Delta \hat{P}_T(x_2, y_2, \omega) \right] \right\} \]

- Convolve cross PSD with free-space Green’s function (of convected wave eq.) to get far-field PSD

\[S_{PP}(x, y, z, \omega) = \left(\frac{\omega z}{4\pi c_0\sigma^2} \right)^2 \int \int \int \int S_{QQ}(x_1, x_2, \eta, \omega) \exp \left\{ \frac{i\omega}{c_0} \left[\frac{(x_1 - x_2)(M - x/\sigma)}{\beta - 2} + \frac{y\eta}{\sigma} \right] \right\} \, dx_1 \, dx_2 \, dy_1 \, dy_2 \]
Far Field Noise Power Spectral Density, $S_{pp}(\omega)$

- At $18.5c$ from mid point of leading edge along lift direction
- Charles: Ffowcs-Williams Hawkings Analogy & Amiet’s Formula
- Different span in Exp. and CFD (3:1)
 - For one-to-one comparison (if $L_{sim} < L_{corr}$):
 $$(S_{pp}(\omega))_{sim\ corrected} = (S_{pp}(\omega))_{sim} + 10 \log \left(\frac{L_{exp}}{L_{sim}} \right)$$
Far Field Noise – Peak Directivity

- Noise measurement data available on a circular arc \((r = 18.5 \, c)\)
- Dipole directivity (as expected)
- Convective amplification – increased power upstream
Conclusions and Future Work

Conclusions:

– Progressing towards assessing impact of wake turbulence on turbine noise
– Model problems solved to assess prediction accuracy
– Rod-airfoil problem \rightarrow reasonable accuracy in near- and far-field spectra

Future Work:

– Wind farm calculations with ABL inflow (stable conditions)
– LES calculation of part-span blade with inflow turbulence from SOWFA calculations
Acknowledgements

• General Electric Co.: sponsoring part of rod-airfoil calculations

• NSF XSEDE and ANL ALCF: computational resources