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ABSTRACT
Maintenance optimisation is a crucial issue for industries that utilise physical assets due to its

impact on costs, risks and performance. Current quantitative maintenance optimisation

techniques include Modelling System Failures MSF (using monte-carlo simulation) and

Delay-Time Maintenance Model (DTMM). The MSF investigates equipment failure patterns

by using failure distribution, resource availability and spare-holdings to determine optimum

maintenance requirements. The DTMM approach examines equipment failure patterns by

considering failure consequences, inspection costs and the period to determine optimum

inspection intervals. This paper discusses the concept, relevance and applicability of the

MSF and DTMM techniques to the wind energy industry. Institutional consideration as well

as the benefits of practical implementation of the techniques are highlighted and discussed.

Key words: Wind turbine, Maintenance optimisation, Modelling System Failures, Monte

Carlo Simulation, Delay-time maintenance model.

1. INTRODUCTION
Wind is becoming an increasingly important source of energy in order to reduce the emission

of greenhouse gases and mitigate the effects of global warming. Improvements in the design

of wind turbines [1] and the ready availability of wind resources in most parts of the world are

contributing to the rapid development of the industry. In recent years, the industry has

experienced a significant shift in the development of wind farms from onshore to offshore

locations [2] due to more favourable wind resources and the possibility of installing higher

power turbines. 

Wind turbines are usually purchased with a 2-5 years all-in-service contract, which

includes warranties, and corrective and preventative maintenance strategies [3]. These

maintenance strategies (corrective and preventative) are often adopted by wind farm

operators at the expiration of the contract period to continue the maintenance of wind

turbines [4]. However, Andrawus et al [5] explained the inadequacy of these strategies to meet

the current maintenance demands of the wind industry. A hybrid of Reliability Centred

Maintenance (RCM) and Asset life-cycle analysis (ALCA) technique [6] was used to

determine suitable maintenance strategies for wind turbines. Arthur [7] explains that RCM is

a qualitative approach to maintenance optimisation which can be clouded with subjective

opinion and experience. Thus, Scarf [8] recommends the incorporation of simple

mathematical models which are quantitative in nature into the maintenance optimisation

processes of physical assets. Given these limitations of RCM, this paper discusses the concept
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and relevance of two quantitative maintenance optimisation techniques to the wind industry.

It proposes practical applications of the approaches to assess the failure characteristics of

wind turbines and to optimise the maintenance activities on wind farms. Finally, the benefits

of maintenance optimisation are presented with the necessary conclusions and suggestions

for future work.

2. MAINTENANCE OPTIMISATION
Maintenance can be defined as “…the combination of all technical and associated

administrative actions intended to retain an item or system in, or restore it to, a state in which

it can perform its required function” [9]. Maintenance optimisation is “…a process that attempts

to balance the maintenance requirements (legislative, economic, technical, etc.) and the

resources used to carry out the maintenance program (people, spares, consumables,

equipment, facilities, etc.)”[10]. Basically, the main purpose of maintenance optimisation is to

determine the most cost-effective maintenance strategy. This strategy should provide the

best possible balance between direct maintenance costs (labour, materials, administration)

and the consequences or penalty of not performing maintenance as required (i.e. labour,

materials, administration, loss of production and anticipated profit etc) without prejudice to

Health, Safety and Environmental (HSE) factors. The concept of maintenance optimisation is

illustrated conceptually in Figure 1. 

Evidently, carrying out maintenance activities such as inspection, preventative

maintenance, and replacement of components more frequently, increases the direct cost of

maintenance. Thus, the risk exposure or the consequences of not performing maintenance

activities as required, reduces. However, the less frequent the maintenance activities, the

lower the maintenance cost, and the higher the risk exposure. Optimisation deals with the

interaction between these factors and aims to determine the optimum level. This is usually

obtained at the lowest point on the total combination of the key variables, where maintenance

activities are carried out at the lowest total impact (optimal cost and interval) as shown in

Figure 1.

The optimisation of wind turbine maintenance is a promising way to maximise the return

on investment in wind farms over a defined period, given that, “the net revenue from a wind

farm is the revenue generated from sale of electricity less operation and maintenance (O&M)
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Figure 1. Maintenance Optimisation Concept
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expenditure” [11]. Therefore, the wind industry has a clear opportunity to consider the

strategic importance of maintenance optimisation and to proactively realise the benefits that

are available through practical implementation of optimal maintenance strategies over the

life-cycle of wind farms. Essentially, there are two approaches to maintenance optimisation;

qualitative and quantitative. The latter is the focal point of this paper while bearing in mind

that optimisation process is not a one-off procedure but a continuous process which requires

periodic evaluation of performance and improving on the successes of the past.

3. QUANTITATIVE MAINTENANCE OPTIMISATION
Quantitative maintenance optimisation (QMO) techniques employ a mathematical model in

which both costs and benefits of maintenance are quantified and an optimum balance

between both is obtained [12]. There are a number of QMO techniques in the field of Applied

Mathematics and Operational Research, for example, Markov Chains and Analytical

hierarchy processes [13]; Genetic Algorithms [14] etc. However, most of the approaches are

criticised for being developed for mathematical purposes only and are seldom used in

practical asset management to solve real-life maintenance problems [12]. Furthermore,

Arthur [7] observed that, “…quantitative maintenance optimisation can be clouded through

the rigorous data demands of mathematical modelling and these same models require data

that is often unavailable”. 

Modelling System Failures (MSF) has been recommended as the best approach to assess

the reliability and optimise the maintenance of mechanical systems [15]. Delay-Time

Maintenance Model (DTMM) [8] is well-known for its simplistic mathematical modelling and

has been applied practically to optimise the inspection intervals of some physical assets with

considerable success. Arthur [7] has employed it to optimise inspection intervals for an Oil and

Gas water injection pumping system. The approaches of the two QMO are now discussed in

more detail. 

4. MODELLING SYSTEM FAILURES AND MONTE CARLO SIMULATION
This technique investigates the operations and failure patterns of equipment by taking into

account failure distribution, repair delays, spare-holding, and resource availability to

determine optimum maintenance requirements [15]. The first step in the approach is to

identify a suitable statistical distribution that will best fit the assessed failure characteristics of

the physical asset. Secondly, a suitable parameter estimation method is selected to calculate

the parameters of the identified statistical distribution. Then, the calculated parameters are

used to build a Reliability Block Diagram (RBD) which permits the use of Monte Carlo

simulations to determine the optimal levels of key maintenance variables such as costs, spare

holdings, the level of reliability and availability required etc.

4.1 Statistical Distributions
Fundamentally, there are three failure patterns that describe failure characteristics of

mechanical systems [15]. These include reducing, constant and increasing failures as

illustrated in Figure 2. The figure displays a curve usually referred to as a hazard rate or most

commonly a bath-tub curve. The reducing failure pattern usually known as the infant

mortality denotes failures that occur at the early-life of equipment and the likelihood of

occurrence reduces as the age of the equipment increases. The constant failure pattern

represents failures that are independent of equipment age, that is, the likelihood of

occurrence is invariable through out the life-cycle of the equipment. Lastly, the increasing
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failure pattern commonly referred to as wear-out symbolises failures that occur at the later

life of equipment, that is, the likelihood of occurrence increases with the age of the equipment.

It is worth noting, that the bath-tub curves differ for different pieces of equipment in the wind

turbine. The reader is referred to [16] for a more detailed study on types of failure pattern.

A number of statistical distributions exist to fit the failure patterns afore described.

Exponential distribution describes a constant hazard rate [15] while Normal and Lognormal

describe the increasing hazard rate [15]. However, the most commonly used distribution is the

Weibull named after a Swedish engineer Waloddi Weibull (1887-1979) who formulated and

popularised the use of the distribution for reliability analysis. The distribution is very versatile

as it fits all the three basic patterns of failure. Note that the Weibull distribution is also

employed in the analysis of wind speed distribution but this is outside the scope of this paper.

4.2 The Weibull Distribution 
This distribution can be represented in 3 different forms; 3-parameter, 2-parameter and 1-

parameter. The 2-parameter Weibull distribution denoted by a probability density function

(pdf) and cumulative distribution function (cdf) given in Equations 1 and 2 respectively is

considered exclusively. 

(1)

(2)

Where β and η represent the shape and scale parameter respectively. The value of β

describes the failure pattern of the equipment. As a general rule, (β< 1) means a reducing

failure pattern, (β=1) signifies a constant failure pattern and (β>1) indicates an increasing

failure pattern, as depicted in Figure 2. Conversely, the scale parameter denotes the

characteristic life of the equipment; the time at which there is an approximately 0.632

probability that the equipment will have failed [15]. Estimating the parameters requires a

suitable method that will best fit the characteristics of the collated data. 

( )
b

h







−

−=
T

eTF 1

( ) 0,0,0;
1

>>≥







=









−

−

hb
hh

b
β

h
β

Te
T

Tf
T

104 WIND TURBINE MAINTENANCE OPTIMISATION: 

PRINCIPLES OF QUANTITATIVE MAINTENANCE OPTIMISATION

Constant Increasing

Equipment life

< 1 = 1 > 1

Reducing Constant Increasing

Equipment life

β β β< 1 = 1 > 1

Figure 2. ‘Bath-Tub’ curve showing failure patterns
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4.3 Parameter Estimation Methods
Common parameter estimation methods include probability plot, regression analysis and

Maximum Likelihood Estimation (MLE). The characteristics of data collated influence the

estimation method to be used. Field or life failure data are seldom complete as they are often

subjected to suspensions or censorings. An item could have been temporarily removed from

the test during the test interval or the test interval could elapse before an item fails. The

probability plot and the regression analysis are limited in dealing with data sets containing a

relatively large number of suspensions or censorings [17]. The MLE takes into account the

times-to-suspension or censoring in the estimation process which makes it a more robust and

rigorous estimation method. The process of using the maximum likelihood to estimate the

parameters of the weibull distribution when data are censored is discussed in the next

subsection.

4.4 Maximum Likelihood Estimation in the Weibull Distribution
Consider a random failure sample consisting of multiple censoring or suspension. Suppose

that censoring occurs progressively in k stages at times Ti where Ti > Ti–1, i = 1,2…k and that at

the ith stage of censoring ri sample specimens selected randomly from the survivors at time Ti

are removed from further observation. If N designates the total sample size and the number of

specimens which fail at times Tj and therefore provide completely determined life spans [17], it

follows that

(3)

The likelihood function is

(4)

Where C is a constant, f(T) is the pdf, and F(T) is the cdf.

Note: Harris and Stocker [18] defined a likelihood function L (α) as “the probability or

probability density for the occurrence of a sample configuration x1, …, xn given that the

probability density f(x; α) with parameter α is unknown i.e. L (α) = f(x1; α)… f(xn; α)”

Substituting equations 1 and 2 in 4 

(5)

Then taking the natural logarithm 

(6)

Taking the partial derivatives of Equation 6 with respect to β and η will result in Equations

7 and 8. These can be used to estimate the values of β and η respectively. Note that Equation 7

is obtained by equating the partial derivative of β to zero. This allows the maximum likelihood

of β to be estimated by using an iterative procedure or trial and error approach. Alternatively,

the equation can be programmed in Excel and the estimate obtained easily by using a Micro

Soft solver. 
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(7)

(8) 

The estimated values of β and η of each component within a subsystem are used to design

Reliability Block Diagrams (RBD) to model the failures of the subsystem. Similarly, the β and

η values for each subsystem within a system are estimated to model the failures of the system.

For example, consider a wind turbine as a system and the gearbox of the turbine as a

subsystem with the following components; shafts, intermediary speed shaft (IMS) bearings,

high speed shaft (HSS) bearings, key ways, gear-teeth etc. The β and η of each of the

components are estimated to model the failure behaviour of the gearbox. Similarly, the β and

η of each subsystem of the turbine such as the generator, yaw, hub etc are estimated to model

the failures of the wind turbine. In the modelling, Reliability Block Diagrams (RBD) are

designed for the subsystems to incorporate the failure characteristics of the components.

Then, the RBD of the subsystems are used to model the failures of the wind turbine as

illustrated conceptually in figure 3. Thus, the failure behaviour of the wind turbine can be used

in modelling the failure characteristics of a selected wind farm. It is worth noting however, that

the modelling processes depend on the availability of failure data to estimate the β and η

values for the components and subsystems of the wind turbine. The models are simulated

using Monte Carlo simulation software to assess the reliability, availability and

maintainability of the wind turbine as well as the wind farm. The effects of different

maintenance strategies such as the Failure-Based, Time-Based and Condition-Based on the

wind farm model can be assessed to determine the most cost effective strategy by taking into

account the costs and availability of maintenance crew and spare holdings.
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Figure 3. Modelling wind turbine failures
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5. THE DELAY-TIME MAINTENANCE MATHEMATICAL MODEL
This technique examines equipment failure patterns by taking into account failure

consequences, inspection costs and intervals to determine an optimal inspection interval. In

[6], suitable Condition Based Maintenance (CBM) actions were selected for wind turbines. The

selection was based upon identifiable warning signs that can be measured to assess the actual

condition of incipient failures. The availability of reasonable time that permits proactive

action to avoid catastrophic events was also taken into account. Therefore, the time taken by

an incipient failure to deteriorate from inception to catastrophic event is fundamental to

determining maintenance intervals. This is illustrated in Figure 4.

In an RCM approach, P-F intervals are determined subjectively on the basis of engineering

judgement and experience [19]. The P-F interval determines the frequency of CBM activities

and is usually carried out at a time ≤ P–F Interval/2. Moubray [16] suggested five ways to

determine P-F intervals for equipment but concludes: “it is either impossible, impracticable or

too expensive to try to determine P-F intervals on an empirical basis”. 

A simple quantitative mathematical model known as the delay-time maintenance model

[8] allows the determination of the optimal inspection interval by taking into account costs,

risks and performance. The delay-time is the time between a defect becoming apparent and

functional failure actually occurring. This is synonymous to the P-F interval. The concept of

the delay-time model is discussed in the next subsection.

5.1 Concept of the Delay-time Maintenance Mathematical Model
This maintenance mathematical model proposes a Poisson process of defects rate of arrival

(α); exponentially distributed delay-times with mean (1/γ), and perfect inspection. Perfect

inspection permits the detection of all expected failure modes. Note the defects rate of arrival

connote complete failure of an item or defects found during inspection. Suppose all the

gearboxes of wind turbines in a particular wind farm are subjected to regularly spaced

inspections (such as vibration analysis) with inspections occurring every ∆ in the interval [0,

T]; where T is a multiple of ∆ as shown conceptually in figure 5. Two defect arrival scenarios (F1

and F2) underpinning the principles of the delay-time mathematical model are shown in the

figure. Incipient failure F1 occurs between inspection intervals, is detected at the next

inspection 2∆ which is then followed by a repair or F2 occurs, fails catastrophically at ti before

the next inspection 3∆.
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Thus, for a component observed over a period of T days with inspections equally spaced at

intervals of ∆ days, the maximum likelihood estimates satisfy the expressions;

(9)

Where; 
�α = defect rate, n = total number of defects observed (i.e. the sum of failed and

repaired equipments), and T = period under consideration. Also

(10)

Where k failures are observed at times ti (i = 1,…,k) from the last inspection, and n – k

defects are found at inspections. 
�γ and 

�α are estimates of γ and α respectively. The optimal

inspection interval, ∆* satisfies the expression 

, which has a solution provided (11)

Where c1 is the cost of inspection and repair, and c2 the cost or consequences of failure. The

reader is referred to [20-22] for detailed derivation of the delay-time equations.

6. DATA REQUIREMENT AND COLLATION
Historical failure data pertinent to the components and subsystems of wind turbines will be

extracted from the Supervisory Control and Data Acquisition (SCADA) system. The SCADA

system records failures and the date and time of occurrence; this will be used in conjunction

with maintenance Work Orders (WOs) of the same period to ascertain the specific type of

failure and the components involved. In the compilation, information will be sourced from

wind farms (comprising of turbines of different designs and capacity ratings) located within

the same geographical region. The collated data will first be organised in accordance with the

type, design and capacity of the wind turbines. For example, failure data of all 600 kW

horizontal axis turbines will be extracted and collated. This will further re-grouped according

to the subsystems and components of the wind turbine and then re-arranged in order of

failure modes and dates. 
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7. BENEFITS AND INSTITUTIONAL CONSIDERATION OF MAINTENANCE
OPTIMISATION
Effective implementation of maintenance optimisation will improve the reliability and

availability of wind turbines as well as address the Health, Safety and Environmental issues. In

addition, it will reduce the overall cost of operation and maintenance by revealing and

focusing attention on problem areas. These will facilitate elimination of root causes of failures

and also maximise the overall return on investment in wind farms.

Improving the reliability, availability and maintainability of wind turbines and the

associated grid connection facilities require useful field failure and maintenance data. The

significance of collating and storing the correct type of data has been emphasised in [[2233]]. It is

imperative to have comprehensive inventories (including specific location) of all wind

turbines of each type in an integrated asset register and data management system. The

system should be robust to accommodate sequential recording of maintenance and failure

data for each component in an RCM format. This will keep maintenance track record of each

asset in a meaningful format that can be used for optimisation process and for an informed

decision making process. 

8. CONCLUSION AND FUTURE WORK
This paper has discussed the concept of two quantitative maintenance optimisation

techniques; modelling system failures using monte-carlo simulation and the delay-time

maintenance mathematical model. It has also discussed the relevance and applicability of the

techniques to optimise the maintenance of wind turbines. The benefits as well as the

institutional barriers have been presented. Further research work is being undertaken to

collate field failure and maintenance data from collaborating wind farm operators. The

collated data will be analysed using the two quantitative maintenance optimisation

techniques presented in this paper. The results of the analyses will be compared and the

overall out come is to be used in developing an optimised maintenance strategy for wind

turbines.
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