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Introduction & Background
ElastoDyn — What Is It?

» Structural-dynamic model for horizontal-axis wind turbines:
— Used to be a fundamental part of FAST

— Now split out as a callable module in the FAST framework with
separate input files & source code

— Includes structural models of the et L e
rotor, drivetrain, nacelle, tower, & U
platform

o [atest version:
— v1.01.02b-bjj (October 2013)

« User’'s Guide:
— Sections of Jonkman & Buhl (2005)
& Addendum (2013)
* Theory Manual (unofficial):
— Jonkman (2005)

FASTKinstics.dos
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Introduction & Background
Inputs, Outputs, States, & Parameters

ElastoDyn

Continuous States:

» Displacements

* Velocities Outputs:
Displacements

Parameters: Velocities

» Geometry Accelerations

 Mass/inertia Reaction loads

« Stiffness coefficients

« Damping coefficients

Inputs:

« Aerodynamic loads

« Hydrodynamic loads

« Controller commands

« Substructure reactions
@ transition piece
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Introduction & Background
Turbine Configurations

« Horizontal-axis (HAWT)

e 2-or 3-bladed rotor
 Upwind or downwind rotor
* Rigid or teetering hub

« Conventional configuration or
inclusion of rotor- &/or tail-
furling

» Support structure that includes
a tower atop a platform

 Land- or sea-based

o QOffshore fixed-bottom or
floating
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Theory Bas
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Nacelle:
Tower:

Platform:

2 flap modes per blade
1 edge mode per blade

1 rotor teeter hinge with
optional 85 (2-blader only)

1 generator azimuth
1 shaft torsion

1 rotor-furl hinge of arbitrary
the nacelle & rotor

1 tail-furl hinge of arbitrary
orientation & location between
the nacelle & tail

1 yaw bearing

2 fore-aft modes
2 side-to-side modes

3 translation (surge, sway, heave)
3 rotation (roll, pitch, yaw)

Platform Sway Total

Platform Pitch

Platform Surge

Platform Roll

24 DOFs available for 3-blader
22 DOFs available for 2-blader
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Theory Basis

Overview

f=ma

(any questions? ©)
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Theory Basis

Overview (cont)

e Combined multi-body- & modal-dynamics formulation:
— Modal: blades, tower
— Multi-body: platform, nacelle, generator, gears, hub, tail

o Utilizes relative DOFs:

— No constraint equations
— ODEs instead of DAEs

* Nonlinear equations of motion (EoMs) are derived &
implemented using Kane’s Method (not an energy method)

M(qut)i+[(g.G.ugt)=0

OutData=Y(g,q.u,u,,t) =Y, (¢.11)d+Y,(¢.4.u.u, 1)
« Time integration using one of several options:
— 4th-order Runge-Kutta (RK4) explicit
— 4th-order Adams-Bashforth (AB4) multi-step explicit (init. with RK4)

— 4th-order Adams-Bashforth-Moulton (ABM4) multi-step predictor-
corrector (PC) (init. With RK4)

e EoM form:
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Theory Basis

Blade & Tower Modeling Assumptions

« Bernoulli-Euler beams under bending:
— No axial or torsional DOFs

st
— No shear deformation 1 mode
. o . . : _ 2" mode
« Straight beams with isotropic material & no mass or elastic offsets:
— Blade pretwist induces flap & edge coupling
« Motions consider small to moderate deflections:
— Superposition of lowest modes:
* Mode shapes specified as polynomial coefficients
* Mode shapes not calculated internally (found from e.g. BModes or modal test)
» Shapes should represent modes, but FAST doesn’t require orthogonality
(no diagonalization employed) P
: , ou o°u
— Bending assumes small strains: ~— K=—_—
oh Oh
« Employs small angle
approximations with nonlinear corrections for coordinate system orthogonality
« Otherwise, all terms include full nonlinearity:
— Mode shapes used as shape functions in a nonlinear beam model Modal
Rayleigh-Ritz method .
(Rayleig ) Representation

— Motions include radial shortening terms (geometric nonlinearity)

— Inertial loads include nonlinear centrifugal, Coriolis, & gyroscopic terms
Wind Turbine Modeling Workshop
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Theory Basis

Rotations

« Support platform pitch, roll, & yaw motions employ small angle
approximations with nonlinear correction for orthogonality

 All other DOFs may exhibit large motions w/o loss of accuracy
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Input Geometry

Turbine Parameterization — Upwind, 3-Blader
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Input Geometry

Turbine Parameterization — Downwind, 2-Blader
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Input Geometry

Turbine Parameterization — Support Platform
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Structural Features of FAST v8
Compared to v7

. All new features are being added to the new framework

« Until all features of v7 are included in v8, both will be supported

Structural Dynamics (ElastoDyn, SubDyn, and MAP)
FAST Features v7.02 v8.03
e Blade-bending DOFs

Rotor teeter DOF

Generator azimuth and drivetrain torsion DOFs
Nacelle-yaw DOF

Tower-bending DOFs

Rigid-body platform DOFs

Furling DOFs

DN N NI NN

DN N N N N AN

e Fixed-bottom multi-member substructure DOFs: v
— Solved with linear frame finite-element or Craig-Bampton reduction v

e Gravitational loading v v

e Gearbox friction v

e System of independent mooring lines solved quasi-statically v v

e System of multi-segmented mooring lines solved quasi-statically v

e Earthquake excitation v




Recent Work & Current & Planned
Work

« Recent work:

— Split out ElastoDyn as a
callable module in the Apparent Fixity Coupled Springs Distributed Springs

FAST framework with Model Model Model

separate input files & n 2@\/\%% o
source code
 Current & planned work: %

— Address current limitations
of FAST v8 relative to v7 LAY

— Introduce built-in
Monopile with Flexible Foundation

W/

¢ ¢ ¢

foundation modgls: Simplified Models of a
* Only user-defined

implementation currently
available
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Current & Planned Work (cont)

 Incorporate higher-fidelity

modeling of blades (BeamDyn): ——— e
— Spectral finite element (FE) & Advancement in Blade Design

improved modal approaches

— Based on Geometrically Exact
Beam Theory (GEBT):

 Linearly elastic material
* Full geometric nonlinearity

— Bending, torsion, shear, &
extensional DOFs

— Anisotropic material couplings (from
PreComp, NUMAD, or VABS)

— Chordwise mass & elastic offsets

— Built-in curvature & sweep Blade Twist Induced By
Anisotropic Layup

Thomsen (2013)
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Future Opportunities

« Publish ElastoDyn Theory Manual
« Add blade-pitch DOFs

» Add drivetrain dynamics & shaft
deflection DOFs

* Add nacelle-based mass-damper DOFs
(with UMass)

* Improve friction models for yaw, teeter,
& furling

« Develop a nonlinear beam FE with
reduced DOFs per element

* Develop general capability for hinged &
segmented blades

Hub with Flap Hinges
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