2009 NREL Wind Turbine Condition Monitoring Workshop

NDT, CM and SHM of Wind Turbine Blades at the National Labs

Mark A. Rumsey
Wind and Water Power Technology Department
Sandia National Laboratories
Albuquerque, NM
505-844-3910 marumse@sandia.gov

October 9, 2009
Presentation Overview

- Wind Turbine Blade R&D
- Challenges
- NDT, CM and SHM Examples
Sandia Wind and Water Power Technology

- **Blade Technology**
 - Materials and Manufacturing
 - Structural, Aerodynamic, and Full System Modeling
 - Sensors and Structural Health Monitoring
 - Advanced Blade Concepts
 - Lab - Field Testing and Data Acquisition

- **System Reliability**
 - Industry data collection
 - Improve reliability of the existing technology and future designs

- **System Integration & Outreach**

- **Water Power**
Sensor-Related Tasks at Sandia Labs

• Laboratory and field Testing (Lead: Josh Paquette)
 – Blade model validation
 – Blade performance and diagnostics

• Blade Manufacturing (Lead: Daniel Laird)

• Reliability (Lead: Paul Veers)

• Next-generation of wind turbine blades
 – Sensor Blade Projects (Lead: Mark Rumsey)
 • Evaluate applicable sensing technologies
 • Address sensor-in-blade issues (Manufacturability, Reliability, Cost)
 • Determine sensor requirements for active aero blade
 – Active-aero Project (Lead: Dale Berg)
 • Develop/modify structural and aero models
 • Model and validate sensor/actuation performance
 • Research fast active devices to augment active pitch control
 • Build and test subscale structures
 • Build and test a SMART rotor
Sandia Blade Research Projects
Blade Geometry and Major Laminate Regions

Source: Josh Paquette
Challenges - Defects ... cosmetic or not?
“80% of the blades that require repair have never been flown.”
Gary Kanaby, Knight & Carver Wind Blade Division.

- Blades are being delivered to the site in a condition that often requires additional treatment of quality issues before they can be installed.
- Rare installations need to have all the blades replaced after the discovery of a batch problem.
- Blade failure can cause extensive down time and lead to expensive repairs.

Blade reliability issues need early attention because of the lost production and cost of significant failures.

Challenges - The Monitoring

Monitor What?
loads, wind dynamics, turbine dynamics, strains, temperature gradients, ...

Monitor Where? (location, location, location)
manufacturing defects, joints, bond lines, cracks, dry-spots, voids, discovered defects, impacts, design stress concentrations, ...

Monitor with What? (sensing technology)
piezo-based sensor/actuators, metal-foil strain gages, optical strain gages (FBGs), acoustic emission sensors, accelerometry, IR thermography, ...

Monitor When? (and how often)
condition-based versus schedule-based

Monitor How? (technique)
integration method, redundancy, interrogation, NDT, CM, SHM, PHM, ...
Blade and Substructure Testing

- Fatigue Test
- Ultrasonic NDT
- Static Test
- IR Thermography
- Radiography
- Flash Thermography
Metal-Foil Strain Gaging Setup and Response during a Fatigue Test of Sandia CX-100 Blade
Fatigue Test Setup for TX-100 Blade

UREX=Universal Resonant Exciter
Lab Test Setup of TX-100 Blade

List of devices shown in the photos:
- Macro Fiber Composite (MFC) piezoelectric sensors/actuators
- Acoustic emission NDI sensors
- Metal foil strain gages
- Photoelastic panel
- Single axis accelerometer
- Two multi-axis accelerometers
- Force actuator
- Force transducer
Response from Acoustic Emission NDT during a Fatigue Test of Sandia TX-100 Blade

*Note: Energy defined as area under V-t curve.

Source: Paquette, "Structural Testing of 9 m Carbon Fiber Wind Turbine Research Blades"
Active in-plane Virtual Forces sensitive to damage.

SHM performed by Jon White and Doug Adams

Lead-lag Virtual Force

Root-tip Virtual Force

Fatigue Cycles 10^6
Photoelastic and Infrared Thermography

Shot at maximum load: maximum compression load on lower surface, maximum tensile load on upper surface.

Shot at minimum load: minimum compression load on lower surface, minimum tensile load on upper surface.
Goal: Increase the viability of wind energy by implementing sensing technologies in blades to enable advance wind turbine control and monitoring strategies.

Challenges:
- Implementing applicable sensing technologies in blades
- Maintaining or improving system reliability

Opportunities:
- New markets for sensing systems suppliers
- Increased wind turbine capability, reliability and availability
- Decrease the cost of energy from the wind
Sensor Integration Issues

Fiberglass and resin matrix in a wind turbine blade

Unsuccessful Bonding

Fiber Optic Sensor
“Structural Damage Identification in Wind Turbine Blades using Piezoelectric Active-Sensing”
Abraham Light-Marquez, Alexandra Sobin

Gyuhae Park ● Kevin Farinholt

Lamb Wave Testing

Time Series Analysis

Frequency Response Method
Thank You!

Mark A. Rumsey
Wind Energy Technology Department
Sandia National Laboratories

marumse@sandia.gov
505-844-3910

www.sandia.gov/wind