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Outline

* Overall methodology

* Motor diagnostic and prognostic algorithms
* Rotor speed detection
* Winding temperature estimation

« Shaft misalignment

* Broken rotor bar detection
* Pump cavitation
 Bearing fault detection

 Extensions to wind
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Overall Condition Monitoring Methodology

Only motor voltages
and currents are
used.

Motor Currents

Motor Voltages

Motor Control Center

(Maotor Terminals, meler,
Starter, Breaker, Drive, efc)

Inferential,
P nonintrusive,
continuous!

E-T-N

Fowering Swsinass Worddwida

Energy Efficiency and Fault Proghostic Algorithms

Power, Energy & Efficiency

Energy Usage
Evaluation

—

Motor
Efficiency

—

Equipment
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—

Parameter
Identification Power Harmonics
Analysis Analysis
Speed
E stimator Motor Energy
Efficiency Usage
Stator
Resistance
Estimator Motor / Load Fault Diagnosis
Bearing Shaft
fault Misalignment
Winding Broken
Insulation Rotor Bar
Motor
Nameplate
Information Thermal Load
Faults Faults
System Pattern Intelligent
Identification Recognition Methods
Statistical & Digital Motor
Stochastical Signal Modeling &
Process Processing Analysis

Inferential Data Processing Technigques




Motor CBM Algorithm Summary

Rotor Speed Detection (R)

Shaft Misalignment (R, B)

Broken Rotor Bar Detection (R, B)
Pump Cavitation (O)

Winding Temperature Estimate (S)
Bearing Fault Detection (B)

Shaft Torque Estimate (R)

Power Metering (O)

Motor Efficiency (O)

Stator Winding Insulation Faults (S)
Power Quality (O)

Harmonics Analysis Algorithms (O) Bearing (B) related: Stator (S) related:
41% 37%

Motor Fault distribution

Other (O): Rotor (R) related:
12% 10%
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Sensorless Rotor Speed Estimation
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Estimation error less than 1%.

— Sensorless, low-cost, and accurate !
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Rotor Eccentricity and Misalignment Detection

Detection of Rotor Eccentricity

Motor Line Currents
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Detection of Shaft Misalignment

Motor Line Currents
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Similar Motor Faults:

« Air-gap eccentricities

* Load torque oscillation
* Rotor unbalances
 Shaft misalignment

* Broken rotor bar

Motor faults can be
P> detected using only stator

voltages and currents



Rotor Fault (Broken Rotor Bar) Detection

Magnitude —»

Wavelets — time/frequency domain multi-resolution analysis

Algorithm is based on advanced
wavelets analysis RotorCore

Detect developing rotor fault
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Pump Cavitation Detection

Fluid vaporizes when the
pressure becomes to low,
forming cavities that violently
collapse causing damage to
the impeller

When pump cavitation
occurs, the spectral energy of
the current in the “lower side-
band” (LSB) and “upper side-
band” (USB) increase
accordingly.
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Winding Resistance/Temperature Estimation

« 37% of motor failures are caused by stator insulation breakdown = thermal
overloading is one of the major causes

« Signal Injection-Based Rg (and Temperature) Estimation
* Inject signal in the stator — Rg estimate and Temperature estimate
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— Sensorless, low-cost, and accurate ! short period (0.5 sec)
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Bearing Fault Detection

Bearing faults classification

Single-point defects

— Characteristic fault frequencies

Generalized roughness

— More realistic of incipient faults

— Difficult to detect for current monitoring

Bearing Test Setup
Accelerate bearing wearing
process to <100 hours
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Bearing faults account for over 40% of all induction motor faults.

The Rest of
Measurement Circuit
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Bearing Fault Detection Algorithm using Noise-
Cancellation

Noise Canceller
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Extensions to Wind

« Motor Current Signature Analysis technology may be possible for
induction generator CBM

« Low cost complement to sensor-based CBM technologies
(vibration, fluid condition, etc)

 Reliable — no sensors to fail!

Enermgy Efficiency and Fault Prognostic Algorithms

Power, Energy & Efficlency
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Technical Challenges of Wind Application

What is special about wind turbine CBM?
» Variable speed and variable torque load
« Time-varying and unsteady loads (wind gust)
« Relative low shaft speed

Unsteady wind load blurs the diagnostic signatures
matured for other applications. Most existing CBM methods
cannot be directly applied due to dynamic load.

Adaptation of motor current spectral analysis (MCSA)
techniques towards time-varying or time-frequency
representations holds promise

Scalability — How well do these CBM methods developed
for relatively small motors (< 200 HP) scale-up to the large
turbine generators?
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Questions?

Condition Monitoring of Motor-Driven
Systems

Mike Nowak
D&P Program Manager
Eaton - Innovation Center
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