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1 Summary and conclusions 

The paper summarises experiences with comparison of wave loads on a 6 m monopile at water 
depth h=25 m. The wave loads are determined by various theories and scaled physical model tests.  
 
It is concluded that only the Boussinesq/Lundgren method may provide an accurate wave load time-
series description. Anyhow, the stream function/Morison method allows for a very accurate non-
linear single wave load calculation which is an important and recognized reference point. The 
simulations show a very high correlation between the single wave force calculated by stream 
function/Morison and the 0.1 % event from Boussinesq/Lundgren time-series. 
 
The linear methods provide an inaccurate estimate, where the deviations increase with the ratio of 
the significant wave height to the water depth.  
 
The experiences with physical model tests show that a certain scatter of results should be expected, 
especially for the moments. For the well investigated structure and wave situation in the present 
paper the numerical simulations are more precise. However for more complex situations physical 
model tests are very important for verification.    

2 Introduction 

The paper summarises the general experiences with comparison of wave forces/moments 
determined by various theories and corresponding model test results. Much of the experiences have 
been obtained in connection to the studies for offshore wind projects carried out by Energi E2 
including Middelgrunden, Nysted, Borkum Riffgrund, Scarweather Sands, London Array plus projects 
carried out by Carl Bro as separately including Lillgrund and Clogher Head. 
 
The methods investigated in the present paper are summarised in table 1. 
 
Method name Wave type Wave model Force model 
Boussinesq/Lundgren Irregular waves Boussinesq Lundgren 
Boussinesq/Morison Irregular waves Boussinesq  Morison 
JONSWAP/Lundgren Irregular waves Stokes 1. order Lundgren 
JONSWAP/Morison Irregular waves Stokes 1. order Morison 
Stream function/Lundgren Regular waves Stream function (30) Lundgren 
Table 1: The table summarises the wave force calculation methods used in the present paper. 
 
All calculations with irregular waves in the present paper are based on the JONSWAP spectrum with 
peak enhancement factor γ=3.3. In the methods based on the Stokes 1st order the wave surface 
elevation time-series are generated directly from the JONSWAP spectrum by means of Inverse 
Fourier Transform (IFFT). In the methods based on Boussinesq simulations, the wave surface 
elevation and kinematics are derived with a high order Boussinesq wave model with an input (lateral 
boundary condition) corresponding to the abovementioned method using the JONSWAP spectrum 
and IFFT.    



 
In the single wave calculations the expected maximum (0.1 % event) wave height are determined by 
the methods described by Battjes, cf. ref [1]. All stream function calculations in the present paper are 
performed with 30th order precision.   
 
An example of determination of extreme loads performed with the Boussinesq/Lundgren method is 
illustrated, including verification with the stream function/Morison method.  
 
3 Wave models 

In numerical simulations it is important to use a suitable wave theory. The validity ranges of regular 
wave theories are summarised in figure 1.   

 
 
Figure 1: Validity of various regular wave theories (ref [2]). In this figure d is the depth.  
 
Close to the breaking limit only higher order stream function methods are valid except for the deep 
water case where high order Stokes are valid as well.  
 
In the case of irregular waves the starting point or input to any model is usually based on Stokes 1st 
order (Linear/Airy) theory. Either this is used alone or as input for a wave model. The only wave 
model for irregular waves investigated in the present paper is a high order Boussinesq model, which 
is very precise, cf. ref [8]-[10].  
 

H/



Figure 2 shows an example of wave surface profiles at intermediate water depth computed with the 
wave model used in the present study.  
 

 
Figure 2: Illustration of surface elevation profile computed with different wave models.  

 
It is clear from figure 2 that the Boussinesq model has advantages over the other models due to the 
combination of high order waves and irregular waves, and the wave surface profile has some 
similarities with the Stream function surface profile. An example of the wave kinematics computed 
with the Boussinesq model is illustrated in figure 3.    
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Figure 3: Illustration of kinematics in non-linear wave 
 
Figure 4 and 5 compare the velocity and pressure profiles calculated with the Boussinesq model, 
stream function theory and directly from the JONSWAP spectrum using Stokes 1st order wave 
theory. We see a clear difference between the Boussinesq and JONSWAP based results. Since the 
Boussinesq method is valid and the Stokes 1st order is not valid, the JONSWAP/Stokes method 
seems to give imprecise description of the velocity and pressure.    
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Figure 4: The figure shows the velocity distribution over the depth at a single time-step. Velocities 
from the 3 wave models discussed in the present paper are compared.   
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Figure 5: The figure shows the pressure distribution over the depth at a single time-step. Pressures 
from the 3 wave models discussed in the present paper are compared.   
 
When a wave model is chosen, this enables the computation of time-series of undisturbed (no 
structure) kinematics in any point over the depth, i.e. the surface elevation, pressure, acceleration 
and velocity. The presence of a structure however influences the pressure field and hence a force 
model is needed to calculate the forces on a structure, unless the chosen wave model includes the 
opportunity to include structures. In the latter case the force is the pressure integrated over the 
surface of the structure.  



4 Force model 

In the present paper, two force models are used namely the Morison equation and the Lundgren 
method.  
 
The Morison equation is an estimate of the forces given the velocity and acceleration at the centre of 
the structure, i.e. both the undisturbed pressure at the structure surface and the pressure due to the 
presence of the structure are estimated from the kinematics at the structure centre. This makes it 
easy and convenient to calculate the forces with the Morison equation. In the Morison equation the 
force coefficients are set to Cd = 1.0 and CM = 2.0 in the present work.  
 
The Lundgren method is an estimate of the forces given the pressure at a distance 0.8 D from the 
centre of the structure and the velocity at the centre of the structure. This enables a better 
approximation to the inertia force in non-linear waves by means of account to a non-constant 
acceleration over the effective volume of the structure and inclusion of effect from finite wave heights. 
For a constant acceleration of a symmetrical wave the Lundgren method results in the same inertia 
force as by applying CM = 2.0 in the Morison equation. Cf. ref [4], [5] and [7] 
 
5 Comparison between the different design methodologies  

The present section describes the verification of results from wave force calculations for a 
monopile with diameter D=6 m, placed at water depth h=25 m. The main calculations have been 
performed with the Boussinesq/Lundgren method, and stream function results are used for 
verification of the results for the highest waves. For comparison results of the Jonswap/Morison 
method using Wheeler Stretching are presented as well.  

The Boussinesq/Lundgren method is desirable because of the need of force time-series. The 
stream function method is a single wave theory, so this method can only be used the check the 
results. On the other hand this single wave case represents an accepted offshore extreme wave 
design case.  

The JONSWAP based methods are found to be insufficient, as they cannot describe forces from 
steeper waves at relatively shallow waters.  

The validity of the Morison equation for irregular waves will be discussed. 

5.1 Boussinesq/Lundgren results 

Prof. Per Madsen and Dr. Harry Bingham have computed full time-series of kinematics with their 
recently developed Boussinesq time-domain model valid for much deeper water than commonly 
used Boussinesq models, cf. ref [8]-[10]. The Boussinesq model calculates the evolution of fully 
non-linear steep and irregular waves in a pseudo 2-D model. The Boussinesq data applied is 
computed with at bottom slope of approximately 1%. The deep-water wave input for the model is 
generated from a JONSWAP spectrum with the ratio of deep-water wave height to deep-water 
wavelength Sop = 0.030. Time-series of approximately 1000 waves have been computed. The 
Lundgren method will be applied on the Boussinesq kinematics to calculate time-series of the wave 
force. These time-series are analyzed and presented mainly in terms of exceedance probability 
distributions, spectra and statistical properties. The statistical interpretations are used for 
calculating the maximum wave loads of 1,000 waves 10,000 waves and 100,000 waves. 



5.1.1 Wave forces 

The wave forces will be analysed in terms of the exceedance distributions by the following model, 
see ref. [4], [5] and [7]. 

offsetxFPkF +⎟
⎠
⎞

⎜
⎝
⎛ >⋅−
⋅=

α
α )))((10logexp(1

 

Where the k, α and offset are arbitrary constants.  

Linear interpretations as illustrated in table 2 are carried out, with the following notation:  

k = k1 . Hs + k2   

α = α 1 . Hs + α 2  

offset = offset1 . Hs + offset2   

k1 220
k2 240
α1 -0.03
α2 0.7
offset1 55
offset2 0  
Table 2: The table shows parameter interpretations for a 6 m monopile at 25 m water depth. 

From the parameters given in table 2, wave force distributions for Hs = 1, Hs = 2, … , Hs = 9 m are 
given in figure 6. The results for Hs = 4-8 m are shown in table 3. 
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Figure 6: Generalized force exceedance distributions calculated with the Lundgren/Boussinesq 
method 
 



Given the wave statistics for the wind turbine site (example figure 7) the wave load distribution and 
wave height distribution can be integrated to give the design wave load, see example figure 8. 
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Figure 7: Example of wave height statistics.  
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Figure 8: Integration of the wave force distributions in figure 6 and the assumed wave height 
distribution in figure 7.  
 
 
 



Hs (m) 4 5 6 7 8
F0.1% 1813 2244 2701 3184 3696
F0.01% 1962 2442 2956 3507 4099
F0.001% 2046 2557 3108 3706 4354  

Table 3: Interpreted results of the maximum wave force on a 6m monopile exposed to 1,000 
waves, 10,000 waves and 100,000 waves at 25 m water depth. The results are calculated with the 
Boussinesq/Lundgren method. 

 

5.1.2 Moment arm (seabed level) 

The seabed level moment arm is interpreted from the exceedance probability distributions of forces 
and moments at seabed level. This is done distribution-wise for the 10 largest values of force and 
the 10 largest values of moment. Note that the moment and force paired in this way, does 
generally not occur simultaneously. Stream function results are shown as well. The moment lever 
arm calculated by the stream function/Morison approach is slightly higher than those calculated by 
the Boussinesq/Lundgren model. This is supposed to be a consequence of the difference in a 
regular wave and irregular wave representation. 
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Figure 9: Moment lever arm for a 6 m monopile at 25 m water interpreted from distributions.  

 
5.2 Boussinesq versus stream function 

With respect to the forces there is very little difference between the results from the maximum of 
the Boussinesq time series and the stream function single wave result, see figure 10. 
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Figure 10: Force results from Boussinesq/Lundgren wave load calculations for a 6 m monopile 
performed at a water depth of 25 m for wave steepness 0.03. The results are related to stream 
function/Morison results. The basis of the calculations is water depths 25 m and 32 m and significant 
wave heights 7 m, 8 m and 9 m.  
 

With respect to the moments there is a somewhat larger difference between the results from the 
maximum of the Boussinesq time series and the stream function single wave result varying 
between 0-10 % for Hs/h = 0.2-0.4, see Figure 11. The difference is largest at the largest wave 
heights. It is deemed that the Boussinesq simulation represents a better estimate to the real wave 
conditions than the single wave solution because a lower lever arm is to be expected at the larger 
waves in a irregular wave train because these are associated with a lower water level due to an 
increase in the radiation stress proportional to the wave height squared.  
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Figure 11: Moment results from Boussinesq/Lundgren wave load calculations for a 6 m monopile 
performed at a water depth of 25 m for wave steepness 0.03. The results are related to stream 
function/Morison results. The basis of the calculations is water depths 25 m and 32 m and significant 
wave heights 7 m, 8 m and 9 m.  

5.3 Model tests versus calculated results 
The comparison is based on physical model tests in scale 1:50 carried out at Aalborg University, 
see figure 12.  

 

 
Figure 12: Illustration from force model tests 



Generally there have been quite some scatter on the results from the physical model tests, and 
accordingly some verification tests have been performed and some of the force results had to be 
smoothed. The results for the 6 m monopile are shown in figure 13.  
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Figure 13: Comparison of force results with Boussinesq/Lundgren wave force calculations 

The results for a 6 m monopile at about h=25m water exposed to a wave height of Hs=5.3-5.8 m 
are summarized in Table 4.  

 

 Hs (m) F0.1% (MN) M0.1% (MNm)

5.8 2.76 61.3 
Physical model tests 

5.3 2.52 57.5 

5.8 2.61 43.4 
Boussinesq/Lundgren 

5.3 2.38 38.7 

Table 4: The table shows results for monopile at water depth h=25 m.  

 
Further problems with model tests include:  

- Scale effect (to the drag forces)  
- Practical problems of carrying out model test with a small smooth slope due to 

length limitations 
- High frequency components are not modelled correctly 
- Measured forces are in practice deflections of an elastic supported structure 

including a resonance frequency 
 
 
5.4 Verification from single wave calculations 

For verification of the wave force time-series and interpretations, wave forces are calculated using 
the stream function theory. As this is a single wave approach, we need to choose design wave 
parameters for the calculation. To do this we will take advantage of the Battjes & Groenindijk wave 
distributions described in ref [1]. The data are summarized in table 5.  



Hs (m) 7 8 9

1.75 2.00 2.25

Hrms (m) 5.10 5.90 6.71

2.00 1.73 1.52

2.33 2.20 2.09

H 0.1% (m) 11.9 13.0 14.0

H 0.1%/Hs 1.70 1.62 1.56

%1.0
~H

trH~

0m

 
Table 5: Maximum wave height calculated from the Battjes & Groenendijk distributions 

The peak period is calculated from the two definitions below: 
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The peak period will be used as the period for the calculations because it is been verified that this 
results in a close correlation between the statistical force/moment (at probability 0.1%) and the 
forces calculated from the stream function theory based on a realistic maximum wave (0.1%). 

The results from the stream function/Morison calculations are presented in table 6, where the 
results are compared with similar results from the Boussinesq/Lundgren and JONSWAP/Morison 
results.  

F0.1% (MN) M0.1% (MNm) F0.1% (%) M0.1% (%)
Stream function/Morison 3.63 72.8 - -
Boussinesq/Lundgren 3.70 68.0 1.7 -6.6
JONSWAP/Morison 3.51 58.6 -3.4 -19.5

Deviation from 
Streamfunction/MorisonWave loads

 
Table 6: Wave loads for a 6m monopile placed at 25 m water, for Hs = 8.0 m, Hmax=13.0 m and 
Tp=13.1 s. Stream function results (single wave) are compared to interpretations of the 
Boussinesq/Lundgren and JONSWAP/Morison methods. 

5.5 Morison equation versus Lundgren method 

In the stream function calculations above, the Morison equation is applied. The stream 
function/Lundgren and stream function/Morison method have been compared for several 
calculations on large waves on water depths about 25m. In both methods the inertia coefficient is 
chosen as CM=2. In all cases the deviations were less than 1% on the force.  

The two methods have been compared for smaller wave heights, and here we found that the 
Morison equation yields higher forces than the Lundgren method, especially for small waves 
(D/L<2). This is because the Morison equation is based on the acceleration and not directly on the 
pressure, which basically means that the Morison equation interpret the pressure difference from 
the acceleration, which introduces an error in this case.  



In calculations with a substantial ratio between the significant wave height and the water depth, the 
asymmetry of the wave is strong enough for the highest waves to introduce a difference in the two 
predictions, which indicate that the acceleration approach to predict the pressure difference used in 
the Morison equation yields a higher pressure difference than the actual pressure difference, which 
means that an error is introduced. There is limited difference in the force spectra except on higher 
frequencies where the Lundgren method acts as a relevant filter not being present in the other 
model, see figure 14. 
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Figure 14: Example of comparison of wave force spectra calculated with the Lundgren method and 
the Morison equation. Both are based on the same Boussinesq data. 
 

For the wave load exceedance distributions there are larger deviations, see figure 15. The 
Lundgren method yields smaller wave load than the Morison equation when irregular Boussinesq 
waves are used.  
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Figure 15: Example of comparison of wave force distributions calculated with the Lundgren method 
and the Morison equation. Both are based on the same Boussinesq data.  
 

5.6 JONSWAP/Morison results 

In Table 6, results predicted with the JONSWAP/Morison method have already been introduced. 
The results have been produced by generation of 20 time-series of the surface elevation. The one 
of the 20 time-series that has a wave height distribution that best fits the Rayleigh distribution is 
used for calculating the force on the structure of for about 1000 wave periods. The calculation of 
forces re-introduces a scatter in the results, and this scatter is evened out by interpretation of the 
exceedance distributions of the force with the same method as used earlier. The curvature factor α 
are reused from the Lundgren/Boussinesq results.  

The results produced in this test show that the force distributions and spectra for the high waves on 
water depth about 25m are close to those predicted with the Boussinesq/Lundgren method. For 
higher and longer waves and on more shallow water the force is under determined by the 
JONSWAP method, because the Stokes method is not valid in this range. The method tends to 
over predict the shorter waves due to the use of the Morison equation.  

5.7 Summary  

The results produced with the Boussinesq/Lundgren method have been compared with results 
from other methods, based on the stream function theory, the Morison equation and the direct 
JONSWAP/Stokes method. The Boussinesq/Lundgren is found to yield the best overall results, 
when time-series are to be calculated. Compared to the stream function results this method yields 
reasonable results. 

A comparison of the results obtained for the 6 m monopole at 25 m water depth has been 
illustrated (for wave steepness 0.03) at figure 16 and 17. The main results are extracted in Table 7. 
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Figure 16: Force results from wave load calculations for a 6 m monopile performed at a water depth 
of h=25 m for wave steepness 0.03. The results are related to stream function/Morison results. The 
basis of the calculations is water depths 25 m and 32 m and significant wave heights 7 m, 8 m and 9 
m.  
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Figure 17: Moment results from wave load calculations for a 6 m monopile performed at 25 m water 
depth for wave steepness Sop = 0.03. The results are related to stream function/Morison results. The 
results are related to stream function/Morison results. The basis of the calculations is water depths 
25 m and 32 m and significant wave heights 7 m, 8 m and 9 m. 
 
 



F0.1% OK Stream function/ Lundgren 
M 0.1% OK 
F0.1% OK Boussinesq/Lundgren 
M 0.1% >0.3 
F0.1% > 0.15 Boussinesq/Morison 
M 0.1% OK 
F0.1% OK Jonswap/Morison 
M 0.1% > 0.15 
F0.1% > 0.22 Jonswap/Lundgren 
M 0.1% > 0.15 

Table 7: Hs/h ratios with forces deviations larger than 5 % (see figure 16 and 17). 
 
From Table 7 it may be concluded that only the Boussinesq/Lundgren model includes a reasonable 
accuracy when time-series are to be produced. The model includes a slightly lower moment (5-10 % 
lower than the stream function theory) for Hs/h exceeding 0.3. But the reality might be that the 
Boussinesq/Lundgren model is more accurate estimate for the irregular wave case than the 
reference stream function/Morison single wave theory because the time series simulations include a 
physically correct reduction in the local water level during the largest waves. 
 
With respect to the previous usually applied Jonswap/Morison method the forces are usually (at least 
for Hs/h < 0.2) of correct order of magnitude but the moments are highly underestimated (for nearly 
all Hs/h > 0.15).  
 
There is no reason to consider applying the Boussinesq/Morison, which overestimate the forces and 
specially the moments or Jonswap/Lundgren, which underestimate the forces and specially the 
moments. 
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