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Outline of Presentation

• Vestas Turbine Simulator
• Existing foundation module
• Improved foundation module
• Craig Bampton substructuring
• Test case
• Conclusion
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Vestas Turbine Simulator

Aeroelastic modelling tool
(Internal Loads)

• 36 DOF combined mode shape and multibody formulation
• Each sub-structure treated using linear Bernoulli-Euler beam theory
• Bearings/Actuators modelled by lumped parameter models
• Power control (Vestas)

- Implemented directly in FLEX5 using DLLs
• Inertia forces are based on the deformed state
• Fundation model treated separately in FLEX5

External Loads
• Aerodynamic load model based on

Blade Element Momentum theory
• Hydrodynamic load model based on

Morison Equation w/o McCamy Fuchs correction

All loads are applied in deformed state
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• Wind and turbulence
• mean wind 
• log. wind shear / table
• IEC deterministic gusts
• skewed inflow
• tower shadow models 
• Veers turbulence model
• Mann turbulence model

• Waves and current
• 1 order irregular Airy waves (generic/custom wave spectra)
• Wheeler stretching
• 2. order irregular Stoke waves
• Stream function regular wave
• Constrained wave
• Current profile (power) 

Vestas Turbine Simulator
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Existing foundation module

Existing Flex5 foundation module features:
• 2 shape functions
• 6 DOF (Fx,Fy,Fz,Mx,My,Mz) at interface
• Fixity constraint below mudline

calibrated to 1. mode natural frequency
• Monopile or equivalent monopile with

identical kinematics at interface

Why ?
• Ability to model soil-structure interaction
• Ability to accommodate increasing demand for more      

complex structures

Increasing water depth
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Improved foundation module

3D space-frame structure of arbitrary geometry:
• Floating model based on stiff elements                         

is working. 
The transformation to the interface is                      
based on a stiff body transformation

• Internal flexibility by FE model                                 
using tubular Timoshenko
beam elements

• Craig-Bampton substructuring
for decomposing FE model                                               
to 6 DOF in Flex 5 to                                               
retain modal scheme

CoGIM ,,

Courtesy: Gunnar Britse
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Floating foundation module

• Arbitrary geometry and 3D wave field
• Description of mass matrix (incl. added mass)
• Description of external loads

• Structural inertia forces (linear terms incl. in mass
matrix)

• Gravity
• Elastic or pretensioned anchor cables
• Hydrodynamic forces (Buoyancy and Morison loading)

Courtesy: Norsk Hydro
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Thimoshenko Beam Elements

• Tubular Thimoshenko beam element:
• 6 DOF at each node
• Outer diameter
• Plate thickness
• Water filling factor, 1 for full and 0 for empty
• Mass and stiffness factor
• Drag and added mass coefficient in normal and 

tangential direction
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Soil-structure interaction

• Soil-structure interaction enables load assessment below
mudline and natural frequency evaluation

• Soil Models:
1. Soil stiffness matrix applied at mudline (incl associated inertia)
2. Soil forces are applied as external loads to elements:

i. Linear stiffness model with linearization of p-y curves at COD loads
ii. Non-linear stiffness model with full p-y curves

Tip soil curve

Axial soil curve

Lateral soil curve

y

z

z
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Improved time integrator

• Original time integrator: 
• 4 step Runge-Kutta-Nustrøm (RKN) integrator for 2. order

differential equation

• RKN time integrator is only conditionally stable as it requires
minimum 3 steps pr. period of each mode, i.e. a very small time 
step required to resolve the highest frequencies

• Implementation of improved time integrator:
• Newmark-Wilson algorithm for step-by-step integration:

1. EOM: 

2. EOM on incremental form:

3. Taylor expansion of in u0

4. Solution of effective equation:

• Unconditionally stable

GFuuu =++ KCM &&&

GFuuuu Δ=Δ+Δ+Δ+Δ KCMM &&&&&0
uuu ΔΔΔ ,, &&&
** Fu Δ=ΔK

FEM results in stiff systems, i.e. a large ratio between
highest and lowest eigenfrequency
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Craig-Bampton method

• Method for reducing the size of the FE model to a 6 DOF superelement at the CB 
boundary, i.e. with coupling to Flex5 at the interface (TB)

• Accounts for both mass and stiffness (unlike Guyan)
• Combines motion of boundary points with modes of the structure assuming the

boundary points are held fixed
• Load transformation matrices (LTM) are used to transform from CB DOFs to  

physical DOFs
• Similar to other reduction schemes:

A practical method for solving large dynamic problems i 
than required by a full FE solution.

Guyan Reduction: }{}{ ruu φ=  where [ ]φ  = [ ] [ ]crcc KK 1−−  
      }{ ru  = remaining DOFs 

 
 Modal decoupling: }{}{ qu φ=  where [ ]φ  = model shapes 
       }{q  = modal DOFs 
 
 CB method:  }{ CBuu φ=}{  where [ ]φ  = CB transformation 
       }{ CBu  = CB DOFs (boundary + modes) 
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Craig-Bampton method

Craig-Bampton theory
• Equation of motion (ignoring damping):

• The Craig-Bampton transform is defined as:

• The modified equation of motion:
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where 
bu  = boundary DOFs 

iu  = internal DOFs, i.e. }{}{}{ quu T
ib

T
ci φφ +=  

cφ  = rigid body modes (or static modes) containing the displacement influence 
       coefficients for internal DOFs 

iφ  = Fixed base mode shapes containing the contribution from internal vibration modes 

CBφ  = Craig-Bampton transformation matrix 
q  = modal DOFs (Flex5 FE implementation q = 0) 
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Craig-Bampton method

Craig-Bampton tailored to Flex5
• Craig-Bampton transformation when q=0

• Condensed mass matrix, stiffness matrix and load vector

• Element (nodal) forces are calculated by inverse CB transformation 
from CB DOfs

• Internal mode shapes are neglected
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FEM implementation

• How will the module be implemented in Flex:
• Equation of motion for the turbine w/o foundation

• Equation of motion for the foundation

• Final equations of motion in Flex

• Implement additional mode shapes if q ≠ 0
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Test case

• Simple test case:
• WTG model: artificial V50 1000 kW
• Monopile fixed at mudline -3m

• OD=3.0m
• t=30mm

• Tower interface at 12.0m
• Shear stiffness neglected, i.e. the Timoshenko elements converts to 

Bernoulli-Euler elements.
• Steady wind speed: 12-14-16 m/s

• No wave loading

11

13

15

17

0 5 10 15 20 25 30 35 40 45 50

Time    [sec]

W
in

d 
sp

ee
d 

   
[m

/s
]

FEM dt=0.005

FEM, dt=0.02
Flex5, dt=0.005

Flex5, dt=0.02



16

Test case
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• Excellent agreement between org. Flex5 and FEM foundation module

• Deviations due to high frequency oscillations in axial and rotational
direction
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Outlook

Summary
• Premises for a fully general FE model using Timoshenko tubular beam 

elements have been described. 

• The FE model is decomposed using Craig-Bampton substructuring in order 
to construct a super-element which fits in to the original modal scheme of 
Flex5. 

• The FE model is prepared for full soil-structure interaction by soil springs or 
stiffness constraints

Future work
• Soil-structure interaction for various foundation concepts is part of a joint 

project between Vestas, Aalborg University, Risø, Elsam Engineering A/S 
and MBD supported by the Danish Energy Council. 

• The soil-structure model will be verified against data from ongoing 
measurements from the Horns Reef wind farm.
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