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Overview

TurbSim generates time series of 3-
component winds on a rectangular 2-D (Y-Z) 
grid in space

Intended to be used with AeroDyn, as input 
for a wind turbine model

Statistical engineering
simulation (not 
physics-based)
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History

SNLWIND (1988)
– Developed by Paul Veers at Sandia National Laboratories
– Simulated the u-component wind speed only

SNLWIND-3D (1992)
– Developed by Neil Kelley at NREL
– Simulated all three wind components
– Included additional spectral models

• Wind farm models (WF_UPW, WF_07D, WF_14D)
• Smooth-terrain model
• IEC Kaimal and von Karman models
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History

SNwind (2000)
– Code was modernized by Marshall Buhl

• Written in Fortran 95 instead of FORTRAN 77
– Contained only IEC Kaimal and von Karman models

TurbSim (2004)
– Written by Bonnie Jonkman
– Includes all features of SNLWIND-3D and SNwind
– Added ability to generate superimposed coherent structures
– Added additional site-specific models

• NWTCUP, based on NWTC-LIST Project data
• GP_LLJ, based on Lamar Low-Level Jet Project data
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Current Models

Three general spectral models
– IECKAI: Neutral Kaimal (defined in IEC 61400-1)
– IECVKM: Neutral von Karman (defined in 61400-1)
– SMOOTH: Smooth Terrain

Five site-specific spectral models
– GP_LLJ: Great Plains Low-Level Jet
– NWTCUP: NWTC (downwind of Rocky Mountains)
– WF_UPW: Wind Farm, Upwind
– WF_14D: Wind Farm, 14 Rotor-Diameters Downwind
– WF_07D: Wind Farm, 7 Rotor-Diameter Spacing
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Simulation Method
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Simulation Method

Frequency Domain
– Power spectral density, S, is defined for each of three 

independent wind components
– Coherence, Cohjk , is defined between points j and k in space 

for each component (not between components)
– Cross-spectral density, Sjk , is calculated using the auto- 

spectral densities and coherence:

jk jk j kS Coh S S=
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Fourier Transformation
– The spectral matrix is transformed using a Cholesky 

decomposition:

– Fourier coefficients are calculated:

– Independent, zero-mean, wind speed time series are 
obtained by an inverse FFT

Simulation Method
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Simulation Method

Time Domain
– The three independent wind speed components, u, v, and w, are 

correlated at each point, j:

• The α coefficients are chosen so that the input hub-point Reynolds 
stresses are achieved

• The α coefficients are zero for the IEC spectral models
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Simulation Method

Time Domain (continued)
– The mean wind speed profile is 

added
– Horizontal and vertical flow 

angles are applied 
• Data is transformed from 

coordinate system aligned with 
the mean flow to inertial 
reference frame

– Time series are summarized and 
written to output files

Sample TurbSim Wind Profiles
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Simulation Method

Superimposed Coherent Structures
– Structures are sections of LES and DNS realizations of a 

Kelvin-Helmholtz billow
– TurbSim calculates (randomly) where 

structures should be added and how 
they should be scaled

– Structures are superimposed on 
the TurbSim-generated time series 
in AeroDyn during turbine simulations
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Types of Coherence in TurbSim
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Velocity Spectra

Modeling Velocity Spectra for 
Site-Specific Models
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Modeling Spectra: Method

Data binned by stability and wind 
speed categories
– 2-m/s wind-speed bins
– 5 stability bins based on Richardson 

number (2 unstable, 3 stable)

30-minute logarithmic spectra 
averaged in each category bin

Average spectrum in each bin modeled as a sum of spectral 
peaks, based on form of SMOOTH model (spectra developed by 
Risø authors Højstrup, Olesen, and Larsen)

Scaling parameters of spectral peaks fit to exponential and 
power functions, based on mean of category 
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Modeling Spectra: Datasets

GP_LLJ model → Lamar dataset 
– 20 Hz data 
– Sonic anemometers at 54, 67, 85, and 116 m

• Each anemometer had 1,152 – 3,633 thirty-minute spectra

NWTCUP model → NWTC/LIST dataset 
– 40 Hz data 
– Sonic anemometers at 15, 37, and 58 m on central tower 

and at 37 m on two outside towers
• Each anemometer had 405 – 668 thirty-minute spectra
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Modeling Spectra: Datasets

WF_UPW model → San Gorgonio Inflow dataset
– 50 Hz data 
– Sonic anemometer at 23 m

WF_14D → model San Gorgonio Outflow dataset
– 50 Hz data 
– Sonic anemometer at 23 m

WF_07D model → Thin Airfoil Row 37 dataset
– 16 Hz data
– Sonic anemometer at 23 m
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Modeling Stable Spectra

Neutral/Stable SMOOTH model1
– Basis function for modeling site-specific spectra for stable 

boundary conditions
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Modeling Stable Spectra

Neutral/Stable Site-Specific Models: 
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Number of Stable Spectral Peaks in TurbSim Models
u v w

SMOOTH 1 1 1
GP_LLJ 2 2 1

NWTCUP 2 2 2
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WF_07D 2 2 2
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GP_LLJ Stable Spectra
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NWTCUP Stable Spectra
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Stable u-Component Spectra
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Stable v-Component Spectra
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Stable w-Component Spectra
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Modeling Unstable Spectra

Unstable SMOOTH model2

– Basis function for modeling site-specific spectra for unstable 
boundary conditions

2 Højstrup, J.  (October 1982)  “Velocity Spectra in the Unstable Planetary Boundary Layer.” Journal 
of the Atmospheric Sciences, Vol. 39.
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Modeling Unstable Spectra

Unstable Site-Specific Models
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GP_LLJ Unstable Spectra

Not enough data to fit scaling 
equations with confidence

The unstable GP_LLJ 
spectra are the same as the 
unstable SMOOTH spectra in 
TurbSim 
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NWTCUP Unstable Spectra
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Unstable u-Component Spectra
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Unstable v-Component Spectra
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Unstable w-Component Spectra
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Spatial Coherence

Modeling Vertical Coherence 
for Site-Specific Models
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Modeling Coherence: Method

Data binned by wind speed, 
standard deviation of wind speed, 
and stability categories
– 2-m/s wind-speed bins
– 0.5-m/s standard deviation bins
– 5 stability bins based on Richardson 

number (2 unstable, 3 stable)

Magnitude-squared coherence estimate from 30-
minute time series averaged for each separation 
distance in each bin
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Modeling Coherence: Method

Average coherence fit with exponential coherence equation 
developed by Thresher et al3 , with free variables “a” and “b/L” :

Coherence specified by IEC 61400-1 standard uses same form, 
with Um = Uhub and parameters specified as
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Modeling Coherence: Datasets

GP_LLJ model → Lamar dataset
– 20 Hz data
– Sonic anemometers at 54, 67, 85, and 116 m

• Coherence for all three wind components 

NWTCUP model → NWTC/LIST dataset
– 40 Hz data
– Sonic anemometers at 15, 37, and 58 m on central tower

• Coherence for all three wind components 
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Modeling Coherence: Datasets

WF_UPW model → San Gorgonio Inflow dataset
– 5 Hz data
– Cup anemometers at 5, 10, 20, and 50 m

• Coherence for u and v wind components

WF_14D and WF_07D models → San Gorgonio 
Outflow dataset
– 5 Hz data
– Cup anemometers at 5, 10, 20, and 50 m

• Coherence for u and v wind components
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GP_LLJ Coherence 
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GP_LLJ Coherence: Neutral, u-Component
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GP_LLJ Coherence: Neutral
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NWTCUP Coherence 
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NWTCUP Coherence: Neutral, u-Component
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NWTCUP Coherence: Neutral
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Modeling Coherence: Results

For all site-specific models, the “a” parameter is 
modeled as a function of wind speed, height, and 
stability:

The “b/L” parameter is modeled as a function of wind 
speed for all site-specific models, as well as stability 
for the NWTCUP and GP_LLJ models:
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Modeling Coherence: Results

The wind farm models (WF_***) did not have time 
series to analyze for w-component coherence (data 
came from cup anemometers)

To model w, we compared ratios of the parameters of 
the u-component coherence to the w-component 
coherence in the NWTCUP and GP_LLJ models
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Modeling Coherence: Results

The ratio of the “a” decrement parameters:

0.4w ua a=WF_*** coherence modeled in TurbSim:
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Modeling Coherence: Results

The ratio of “b/L” parameters:

10
w u

b b
L L

=WF_*** coherence modeled in TurbSim:
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Wind Profiles

Modeling Wind Profiles for 
Site-Specific Models
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Modeling Wind Profiles: Method

Most models (all but GP_LLJ) assume power-law 
wind profile
– Power-law exponent based on SeaWest Inflow and Outflow 

measurements

Wind speed and direction profiles for GP_LLJ based 
on SODAR measurements from Lamar LLJ project
– Used “high confidence” profiles with continuous data up to 

500 meters
– Each profile was fit with Chebyshev polynomials of the first 

kind
– Coefficients of each polynomial were analyzed against 

scaling parameters (stability, jet wind speed, friction velocity, 
etc.)
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Modeling Coherence: Jets

Wind speed (left) and direction (right) profiles from the 
LLLJP measured by SODAR on June 23, 2002
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Modeling Wind Profiles: Jet Results
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Modeling Wind Profiles: Jet Results
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Modeling Wind Profiles: Power Law

Power law exponent, α
– NWTCUP and WF_UPW 

models based on SeaWest 
Inflow dataset

– WF_07D and WF_14D 
models based on SeaWest 
Outflow dataset

– Exponent is a function of 
Richardson Number
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Coherent Structures

Modeling Coherent Structures 
in TurbSim
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Modeling Coherent Structures

What is a coherent structure?
– For our analysis, a coherent structure was defined as an 

event where the 3-s mean coherent turbulent kinetic 
energy (CTKE) meets a specified threshold value
• Threshold for Lamar LLJ dataset was 2 m2/s2

• Threshold for NWTC/LIST, SeaWest Inflow, Outflow, and Thin 
Airfoil Row 37 datasets was 5 m2/s2
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Modeling Coherent Structures

Do the “background” wind fields generated by 
TurbSim contain coherent structures?
– Yes, some of them do.  
– The “background” statistical wind files don’t always generate 

enough structures when compared with measured data.
– The coherent structure file is designed to add more events 

with realistic spatial- 
temporal characteristics 
to the “background” 
wind
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Modeling Coherent Structures

CTKE in a “background” wind file generated by TurbSim
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Modeling Coherent Structures

CTKE in a “background” wind file generated by TurbSim
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Coherent Structures: NWTC/LIST
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Modeling Coherent Structures: Method

Two simulations of an evolution of a Kelvin-
Helmholtz billow were broken into pieces
– Large Eddy Simulation (LES) computed by the 

National Center for Atmospheric Research (NCAR)
– Direct Numerical Simulation (DNS) computed by 

Colorado Research Associates (CoRA) 

Boundaries of pieces were determined by CTKE at 
the center of the billow
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Modeling Coherent Structures: Method

Data binned by wind speed and stability categories
– 2-m/s wind-speed bins
– 5 stability bins based on Richardson number (2 unstable, 3 

stable)

For each bin, we calculated
– Rate parameter (inter-arrival time)
– Total length of all coherent structures in 10-min records
– Peak CTKE of the coherent structures in 10-min records
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Modeling Coherent Structures: Method

Pieces of KH billow are added to the coherent 
structure file
– KH billow pieces are chosen from a uniform distribution
– Event start times are chosen from an exponential distribution 

using calculated rate parameter
– Extra pieces are concatenated to ensure total length of events 

is at least the expected length of coherent structures

In this example 3 events occurred; Event 2 formed from 2 concatenated pieces (colors denote separate pieces of KH billow)
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Modeling Coherent Structures: Method

KH billow pieces are scaled in time and space
– Stored as non-dimensional structures
– Time and velocity are scaled to achieve the peak CTKE 

(given a particular space scale)

Structures are superimposed on background wind 
field (in AeroDyn)
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Modeling Coherent Structures: Results

Event inter-arrival times (time from start of one event 
to the next) are functions of stability, background 
wind speed at the center of the billow, and height of 
the billow:

The expected lengths of coherent structures are 
random distributions, based on PDFs of each dataset
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Modeling Coherent Structures: Results

The peak CTKE values, used for scaling the intensity 
of the superimposed events, are functions of 
– stability (Richardson number), Ri
– wind speed, u
– standard deviation of vertical velocity, σw

– friction velocity, u*

– random values, X
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Modeling Coherent Structures

Coherent structures superimposed on background wind
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Modeling Coherent Structures
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