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The Details of Coherent Turbulence Generation Iin
the Stable ABL or SBL

 The weakly stable conditions that we have shown to
be present for high rotor loading events indicate the
possible presence of Kelvin-Helmholtz Instabllity or
KHI.

e This type of dynamic instability is ubiquitous in the
nocturnal boundary layer (NBL) and many believe it
IS the principal mechanism responsible for turbulent
mixing in the NBL.

e Its requirements are strong vertical wind speed shear
and a positive temperature gradient (a temperature
Inversion). A gradient Ri between 0 and +0.25 is
necessary.
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The Detalls of Coherent Turbulence Generation in
the Stable ABL or SBL — cont'd

o If an air parcel (like the one in the early animated demonstration) is
displaced vertically in a stably stratified boundary layer its motion is
described by

Sz(t) = Ae™ +Be™ where N = 0

where N is the frequency at which the air parcel will oscillate. The
relationship between Ri and buoyancy oscillations can be seen by

Ri = (g /6)(@610z)/(8U I &z2)? = N2(8U [ 62)?

Typically there are a range of oscillating frequencies active for a given
situation.

» The National Center for Atmospheric Research (NCAR) developed an
LES numerical simulation of the life cycle of a stationary KHI-induced billow
flow formation for NREL. We have used this simulation as a mechanism to
Insert coherent turbulent structures in the TurbSim Code.
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The NCAR KH Billow Simulation

#-f Temperature Y-£ Coherent TKE
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Interaction of KH Billow and a Wind Turbine Rotor

Using Wavelet Analysis to
Observe a Time-Frequency
Variation of Blade Root Loads
Induced by Coherent Turbulence
from a Simulated KH Billow
Breakdown
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Using Wavelet Analysis to Observed Turbulence
Rotor Interaction

® Blade root flapwise load time series
® Scalogram showing dynamic stress level
as a function of time and frequency
® Time series of root loads in 7 frequenN
(detail) bands using the discrete wavelet

transform

® Detail band frequency ranges roughly
correspond to groups of modal
frequencies including . ..
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Yertical Wind Speed

LES Case W06 Time and Wawvelet Analysis
of Root Out-of-Plane Moment on Blade 1 with Mean Remowved

Coherent TKE Tatal ¥Wind Speed

h' )i“ ﬂ:dﬂ" l\ quflr "HJ‘" l\
)N\ l"lilitlﬂ“.

D3 15- 30Hz
D7 0.938 - 1875 Hz

I |
233 240 245 235

Time (=)
04: T5-15H=z D5 3.75-75Hz DE:1.875-375Hz

O 0.469 - 0.935 Hz D9: 0.234 - 0469 Hz

LES W06_25x_subset,avi

Innovation for Our Energy Future



Coherent structures produce higher frequency
loading

Energy Flux from Coherent Turbulence (CTKE) to Blade
Dynamic Pressure at 78% Span Under Three Inflow Conditions

Wavelet Continuous Transform Co-Scalograms of CTKE and q.
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Actual Measurement of Coherent Structure and ART Turbine

Interaction

e CTKE measurements from
five sonic anemometers on
upwind array

* Flapwise root bending
measurements

e X-Y-Z velocity
measurements from
Inertial Measure Unit
mounted on low-speed
shaft forward billow block
iImmediately behind turbine
rotor
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Energy Flux from Coherent Structure to ART Drivetrain
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TurbSim Coherent Structure Interaction Simulation

VWPact 1.5 MW Virtual Turbine
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Measuring and Simulating Coherent Structures

Coherent structures were determined from the available
measurements (San Gorgonio, the NWTC, and the tower in SE
Colorado)

*The process identifies the intensity (peak CTKE), the total
number of structures and their length in a 10-minute record from
measured data.

*We found that the number of coherent events and the intensity or
rate of occurrence in a record could be modeled by a
Inhomogeneous Poisson Process,; I.e.,

(4t)"
n!

P{N(t)=n}=¢"

where the rate parameter A is a function of a combination of the
scaling variables in TurbSim including U, Ri, o, U, and height.
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San Gorgonio Example for Probability Distribution of the Number of
Coherent Structures Contained in a 10-minute Record, N,

SanGor Distribution of Number of Coh Structures with pkCTKE > 5 (m/s)?
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San Gorgonio Example for the Probability Distribution of the Total
Length of Coherent Structures in a 10-minute Record, T,

SanGor Distribution of Length of Coh Structures with pkCTKE > 5 (m/s)®
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Coherent Structure Properties in San Gorgonio
Wind Farm
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Comparing Lamar and NWTC

(m/s)™

Probability Distributions for Wind Speeds
at Which Coherent Structures Are Present
at All Heights and Measurement Stations

Lamar U(z) PDFs for Coh Structures Present at All Heights NWTC U(z) PDFs for Coh Structures Present at All Heights & Stations
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Spatial Coherence

 The spatial coherence was calculated from the
available measurements for the three sites: San
Gorgonio, the NWTC, and Lamar.

 The Davenport and the IEC (Thresher-Holley)
coherence models were compared with the two
parameter IEC model providing the best
performance.

e Coherence models were determined for all three wind
components and at all available measurement
stations at each location.
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Spatial Coherence — cont’d

e The IEC Coherence Model is
0.5
Conh(r, f):exp[—a((f -r/thb)2 +(r(b/ LC)Z) }

where the decrement a and b/L, term are the two free
variables fitted to the data. The IEC values for Ed.3 are 12
and 0.12 respectively.

« Both parameters were found to be functions of wind speed
and stability (Ri) and, in some cases, height as well.

* Only the U and V components are available for San Gorgonio
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San Gorgonio Spatial Coherence

16 r 0.1 0.1
IECNTM (Ed.3)"  b/L" U-component V-component
14 7] M n n
Upwind "a"" parameter
. Downwind *"a" parameter
- -
S o B Upwind b/L parameter
2 - § Downwind b/L parameter
g 04y} 9 —_——————— c 8 <}
g 5 2 =
o L . < SR Y = r 001 g
= = 3
s .| - IECNTM (Ed3)" a" | 3§ g - '3‘
@ <
=1 o)
(&)
- 0.001 :cts
6 ' :
. / —~ —~ - 2
l T —— 15
/
2 T T T T T = 0.0001 ! ' ' ' ' ' 0.001
0 5 10 15 20 25 30 5 10 15 20 25 30

U (mis) U (m/s)

National Renewable Energy Laboratory Innovation for Our Energy Future



NWTC Spatial Coherence
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Lamar Spatial Coherence
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