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Meeting Purpose

e To give the wind turbine design community an
opportunity to hear about the latest improvements we
have made in the NREL TurbSim Stochastic
Turbulence Simulator Code

e To give the community an opportunity to learn in more
detail about the development of the code, its physical
basis, and how to use it.

* To have the opportunity to share ideas and questions
on how best to use the features of the code.
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Wind Turbines and Boundary Layer Turbulence

* Wind turbines must operate in a wide range of
turbulent flow conditions associated with the
Atmospheric Boundary Layer (ABL)

 The ABL occupies the lowest 1-2 km of the
atmosphere where surface frictional drag has an
iInfluence on the movement of the wind

« Wind turbines occupy the lowest layers of the ABL
and may eventually reach heights of 200 m or more

* The vertical structure and the turbulence
characteristics of the ABL vary diurnally due to the
heating and cooling of the solar cycle
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Wind Turbines and Boundary Layer Turbulence — cont’d

 Itis this change in turbulence characteristics that has
a significant impact on the operations of wind
turbines

« Turbulence induces structural load responses In
operating turbines which in turn creates wear in
components from fatigue

 The purpose of the TurbSim Code is to provide the
turbine designer with the ability to expose new
designs to flow conditions that induce random or
stochastic load responses for a range operating
environments
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Some real world examples

 The best way to understand the role of turbulence on
the operations of wind turbine is to discuss examples
who operating experiences are similar in key
respects

 The greatest operating challenges were found to
occur during the late afternoon and nighttime hours
with the period between local sunset and midnight
often the most challenging
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Hawall

o 15 Westinghouse 600 kW Turbines (now
NWTC CARTS 2 & 3) 1985-1996

« DOE/NASA 3.2 MW Boeing MOD-5B
Prototype 1987-1993

» Installed on uphill terrain at Kuhuku Point
with predominantly upslope, onshore flow
but occasionally experienced downslope
flows (Kona Winds)

o Chronic underproduction relative to
projections for both turbine designs

« Significant numbers of faults and failures
occurred during the nighttime hours
particularly on Westinghouse turbines.
Serious loading issues with MOD-5B
during Kona Winds required lock out
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Hawalill — cont’d

~ Hawall e 81 Jacobs 17.5 and 20 kW
5 turbines installed in
mountain pass on the
Kahua Ranch 1985-

* Wind technicians reported
In 1986 a significant
number of failures that
occurred exclusively at
night

At some locations turbines
could not be successfully
maintained downwind of
local terrain features and
were abandoned
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2.5 MW MOD-2

* Post analysis showed
loads much greater than
had been predicted

* Highest loads generally
to occurred during
nighttime hours

e Terrain induced low-
level jet structure
developed during
nighttime hours
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Turbine Layer Vertical Wind Profile Evolution
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30-minute smoothed profiles from PNL Met Tower MOD-2 Site Goldendale, Washington
MOD-2 Hub Height 61 m
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San Gorgonio Pass California

e Large, 41-row wind farm located downwind of the
San Gorgonio Pass near Palm Springs

* Wind farm had good production on the upwind (west)
side and along the boundaries but degraded steadily
with each increasing row downstream as the cost of
turbine maintenance increased

* Frequent turbine faults occurred during period from
near local sunset to midnight
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San Gorgonio Regional Terrain
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Wind Farm Nearby Topography
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SeaWest Wind Farm San Gorgonio Pass

e 1000 unit wind farm of 44, 65, 108 kW wind turbines (1989-90)
« Significant turbine faulting occurred during late evening hours

 Yaw drive slew rings required repositioning every 3 months and
replacement once a year
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Schematic of SeaWest San Gorgonio Wind Park
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Park Energy Production and Maintenance &
Operations Costs

M&O Costs
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Daytime Flow Patterns Affecting the Wind Park

Westerly flow coming
through the Pass

Hot Southeasterly

Warm air flows up flow from Salton Sea

towards mountain
top replacing air heated
by sun
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Nighttime Flow Patterns Affecting the Wind Park

Strong turbulence
generated where two
streams meet

Warmer flow

coming through
the Pass

4

Cooler drainage flows from
canyon to the south
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Micon 65 kW Turbine Inflow/Structural Response Testing
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NWTC ART Turbine
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NWTC Regional Topography

Elevation (FEET)
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Diurnal Variations in High Blade Loads
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Wind speeds at High Loads

San Gorgonio Micon 65 (SERI Blades) Distribution of Hub-Height

Mean Wind Speeds Associated with High Values (P95) NWTC ART Distribution of Mean Hub Wind Speeds Associated
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Before we can proceed . ..

 We need to define a range of tools that we can
employ to describe both the motions and
thermodynamics of the ABL, its vertical structures,
and the turbulence characteristics associated with
those structures

 We will then be in a position to interpret the observed
turbine aeroelastic response seen over a diurnal
period

e First some atmospheric thermodynamics . ..
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Adiabatic Temperature Changes

« Air parcels moving vertically (lower pressure) in the
atmosphere expand when rising and contract when
descending (higher pressure)

« With this expansion/contraction their temperature
changes in accordance with the 18t Law of
Thermodynamics

e The following discussion assumes that the air we are
tracking is dry and not saturated with water vapor

National Renewable Energy Laboratory Innovation for Our Energy Future



Adiabatic Lapse Rate

It can be shown that for dry air changing height from z, (p,) and
temperature T, to z, (p,) its temperature will be T, as a result of an
adiabatic expansion/contraction (assuming no heat is gained or lost in
the process)

()" |-n((4)

And after taking the anti-logs of both sides

This result allows us to define an adiabatic change in air temperature
with a change in height (pressure)

The rate of (heating/cooling) is 1° C per 100 m height change
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Potential Temperature

Using the definition of the adiabatic lapse rate we can define
the potential (or thermodynamic) temperature as . . .

P
0=T :
e

where
Z IS in meters
Tisin °K
p and p, are in equivalent units of pressure (mb, kPa, etc)
p, Is a reference pressure = 1000 mb or 100 kPa
Ry/c, = 0.286
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Concept of Atmospheric Stability

o Static Stability
e Dynamic Stability
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Schematically

cold, dense air

IT IS STABLE IT IS UNSTABLE
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Static Stability

If we vertically displace the air parcels below .. .

0 °K — 0 °K — 0 °K —
Parcel has Parcel has no net Parcel has negative
positive buoyancy buoyancy
buoyancy and will remain at and will return
and will continue this height to its original level
to rise
It is Unstable It is Neutral It is Stable
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Dynamic Stability or Instability

The right combination of vertical temperature
and wind speed stratification can produce an
oscillatory or resonant response in the wind
field particularly in vertical motions

An example of dynamic instability

Time —

National Renewable Energy Laboratory
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Stability is Important

« The vertical stability exerts a significant influence
over the nature of turbulence in the atmospheric
boundary layer

 We will show that under certain narrow ranges of
atmospheric stabllity, wind turbines can experience
significant structural loading and fatigue damage
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Next . ..

 Now lets more on to describing atmospheric motions
and their chaotic behavior --- turbulence!

e This is the stuff that wind turbine blades must ride
through 24/7 year and year out

* ABL turbulence, while stochastic in nature, does
exhibit spatial and temporal organizational structures
and that have an impact on wind turbines and we will
see

* First some basic definitions and turbulence scaling
concepts . . .
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Definition of Turbulent Wind Components

Decompose orthogonal flow velocity components and temperature
into mean (') and fluctuating (eddy) components ()

U=u-+U'

V=V+V

W=W+W

0=0+0
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The Role of Friction -- Vertical Shearing Stress

Downward flux
or transport of
horizontal
momentum

R=ge

"X (+U’) friction or
shear velocity
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Shearing Stress = The Log Wind Profile

« Has a physical basis

« Assumes that the shearing stress in the wind is
constant with height and that the influence of the
earth’s rotation can be ignored

 The height of this “constant stress” layer can
extend up to 200 m under neutral stability
conditions

 This is called the “surface layer” of the
atmospheric boundary layer
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The Log Wind Profile

Under these assumptions for a statically neutral
boundary layer

. . . u* Z
The “log” wind speed profile can be written U(z)= ” In .
(0]
where Z.. is the surface aerodvnamic roughness lenath

200

100 A
180 A

160 -

N\

u. = slope*0.4

[N
o

u.= 0.695 m/s

z,=0.1m

i
1

log height =

linear height =

N
O,
on

National Renewable Energy Laboratory Innovation for Our Energy Future



Surface Layer (SL) Characteristics

Assumes horizontal homogeneity

The value of u. is approximately constant (>
+10%) throughout its depth = constant shear
stress

« The logarithmic wind profile applies

 The effect of the earth’s rotation can be ignored
(insensitive to Coriolis accelerations)
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How Turbulence Scales in the Surface Layer

Monin & Obukhov developed Similarity Theory using advanced

dimensional analysis techniques

If the vertical fluxes of heat, moisture, and momentum are “constant”
with height (everything is in a more or less steady state or balance),
then the following velocity, temperature, and length scales can be

used to scale turbulence in the surface layer:

U, = /To [ p where z is the shear stress at the surface

Velocity: and p is the air density

Temperature: T.=—F, /u.
’ — Often referred to

Length: @fﬂfﬁ' as the M-O or
kgF, Obukhov length

where F, is the vertical heat flux at the earth’s surface
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Measures of SL Dynamic Stability

Gradient Richardson number, Ri

(g /5)(55/ 82) _ _turbulence generation by buoyancy

Ri = turbulence generation by shear

(aG/az)2

Monin-Obukhov (M-O) stability parameter, z/L

— 'n"y — temperature flux
Z (g /9)(W'9')0 where (W0 )0 at ground surface

L u; 1 kz <= od

g = gravity acceleration

Ri, z/L < 0 = unstable: Ri, z/L =0, neutral;: Ri, z/L > 0, stable
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Important Turbulence Fluid Dynamics Parameters

Turbulent Reynolds Stresses, Fluxes, & Kinetic Energy

Need to be reasonably matched for proper modeling

™

ulul uIVI ulwl
NOTERRVIVERRYETY ~ Reynolds stress tensor

w'u' w'v' w'w'

assumeu'w' =w'u’,uv' =vu,vw =w'v’ == Reynolds stress components
(turbulence component
covariances)

2 ! 2 Wyt 2 ains
o, =uU’,o; =VV, o, =ww

Turbulent Kinetic Energy (TKE)=1/2u"* +v* +w"”
Coherent Turbulent Kinetic Energy (CTKE) =1/ 2[(u'w')? + (u'v')? + (vw')*)]"*

1/2
U :[_(u’v\/)o] = momentum flux at ground surface
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Surface Layer Turbulence Spectra
Scales with Height Above Ground
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Turbulence Spectra Also Scaled by Stability (z/L)
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ABL Vertical Structural Characteristics

Convective
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wind
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ABL Diurnal Evolution
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A Real World Example . ..

o Let’s look at the typical diurnal variation in many of
the surface layer parameters we just discussed

e The data was derived from measurements at the
SeaWest Wind Farm in San Gorgonio Pass California

 We start with what drives the whole shmear

The diurnal variation in incoming solar heat
energy ...
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Diurnal Variation of Vertical Heat Flux F

Mean Diurnal Near-Surface Vertical Heat Flux Over 5-50m Layer
San Gorgonio Pass, California
July-August 1990
800 : : ; ; ;

600 A

400 -

W/m? 200 -

-200 -

0 2 4 6 8 10 12 14

Local standard time (h)

Measured upwind of the wind farm’s first row of turbines
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Variation of Heat Flux and Power Law Wind Shear
Across Rotors, o
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Variation of Heat Flux and Hub-Height (23m) Mean
Wind Speed

800 T T T T T T T T T T T I T I T I T I T T y T 150
600 -

- 14.5
400 ~

- 14.0
200 -

m/s
W/m? 0

- 13.5
-200 -
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-400 - )
Mean vertical heat flux

Hub mean horizontal wind speed
'600 ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I 125
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Local standard time (h)
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Diurnal Variation of Mean Heat Flux, Hub Wind
Speed, and Turbulence Level

800 - 0.16
600 - 0.15
400
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200 A
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Variation of Heat Flux and Stability

Diurnal Variation of Mean Vertical Heat Flux and Stability Over 5-50m Layer
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Variation of Heat Flux and Mean Shearing Stress, u.

Diurnal Variation of Mean Vertical Heat and Momentum Fluxes and Stability
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Variation of Heat Flux and Mean Reynolds Stresses

800 0.4

600 A

400 m/s

200 ~

W/m? 0

-200 A

Local standard time (h)

National Renewable Energy Laboratory Innovation for Our Energy Future



Variation of Heat Flux, Stability, and Surface Drag
Coefficient Cy

Diurnal Variation of Vertical Heat Flux andC_ with Stability
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Variation of Heat Flux and Turbulent Component
Std Devs

Diurnal Variation of Vertical Heat Flux and Oy, Oy, O,
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Back to the Micon 65 Loads Data ...

* Let’'s now take a look at the distribution of blade root
damage equivalent blade loads as a function of other

turbulence scaling parameters
* First vertical dynamic stabllity, Ri

Innovation for Our Energy Future
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Comparison of Measured Turbine Loads as
Function of Stability, Ri

San Gorgonio Wind Farm Row 37 (7D spacing)
Micon 65/13 Wind Turbines Root Flapwise BM Equivalent Blade Loads

24 - -
22 ® SERI Rotor
O  AeroStar Rotor
20 7
18 1
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o
e
10 - S
8 T T T T T I ! I
-0.3 -0.2 -0.1 . ) 0.2
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Hmmm . ..

How do these compare with our blade root load
measurements at on the NWTC ART Turbine?
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Ri Values Associated with High Blade Root Fatigue Loads for
the San Gorgonio Wind Farm and the NWTC

San Gorgonio Distribution of Turbine Layer Ri Associated NWTC ART Distribution of Turbine Layer Ri Associated
with High Values of Flapwise BM DEL with High Values (P95) of Flapwise BM DEL

60 25
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Turbine Layer Vertical Stability, Ine Layer Vertical Stability, Ri

Both peaks occur in weakly or slightly stable conditions!
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Example of Rotor Encountering a Coherent
Turbulent Structure — Aeroelastic Response

= SERI blade

30

edgewise 4

AeroStar blade

root M\ //ﬂ
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moment : \W
(kNm) O

"o 10 11
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3-D Coherent Turbulent Structure at Hub Height Responsible for
AeroStar Rotor Response
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Correlation with Other Turbulence Parameters

e Correlation analysis of root flapwise bending
equivalent loads with a range of turbulence
parameters found strong correlations with the
following:

— The mean hub-height wind-speed (as would be expected)
— The hub measurement of —u’w’ or its equivalent, U.,,

— This suggests that large, transient blade loads are often
associated with strong downward bursts of organized
turbulence

— A new fluid dynamics parameter is needed that represents
the intensity of coherent or organized turbulence that can be
correlated with load parameters such as DEL
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Variation of 3-Blade Mean Flapwise BM with Hub Mean U-component
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Correlation of Flap DEL with U,

Variation of Flapwise BM DEL vs Mean U-component
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Correlation of Flap DEL with u’w’

Variation of 3-Blade Average Flapwise BM DEL
with Mean Downward Momentum Flux u'w"
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NWTC ART Turbulence-Aeroelastic Response
Correlations

 The ART dataset encompasses a much larger record
of inflow conditions that occurred over an entire wind
season

 There were no large turbines operating upstream so
the response was due to the natural turbulence
experienced at the NWTC and not enhanced by the
presence of multiple rows of upwind turbines

* Five sonic anemometers were employed in an array
upstream of the rotor

* We cross-correlated the root flapwise BM DEL with
several inflow parameters
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NWTC 43-m Inflow Array
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to frequent
wind speeds
cutout

Data loss due
above turbine

Observed Diurnal Blade Root Flap DEL Tail Distributions
Local standard time (h)
Diurnal Distribution of Number of Hours in DEL Distribution
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Correlation of ART Hub U-component with Flapwise BM DEL

Variation of ART Flap DEL with Hub Mean U-component
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Diurnal Variation of Flap DEL and Hub Mean Wind Speed

Observed Diurnal Relationship Between Blade Root Flap DEL
and Hub Mean Wind Speed
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Variation of Root Flap DEL with R

Observed Diurnal Variation of Turbine Layer Ri; and
Corresponding Flapwise Root BM DEL Distributions
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Little or no correlation with the usual suspects

Blade root flap DEL (KNm)

Blade root flap DEL (kKNm)

Variation of Blade Root Flap DEL with Hub-Height g,
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Blade root flap DEL (KNm)

Blade root flap DEL (kNm)

Variation of Blade Root Flap DEL with Rotor-Disk
Shear Exponent, a
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However with the local value of 6, ...

Variation of Flapwise DEL with ¢, (2)
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And Diurnally with the Hub value of g, . . .

Observed Relationship Between Blade Root Flap DEL and Hub (37-m) o,
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Some Hints

* The strong correlation with the flap DEL and o, as a
function of height suggests a strong downward
transport mechanism is a work at the NWTC.

 The guestion is what Iis being transported?

* A detailed examination revealed the existence of
Intense coherent turbulent structures entering the
rotor disk and its upwind measurement array from
above.

« Clearly we needed to define a turbulence parameter
that reflected the spatial and temporal organization of
these structures and their intensity.
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Coherent Turbulence Kinetic Energy (CTKE)

* Turbulent kinetic energy is defined as
TKE =% (6,* + 6,2 + 5,,°)
It says nothing about the correlations between u, v,& w

 However the off-axis Reynolds stress components
represent the covariance and cross-correlation
between these three orthogonal components — u’w’,
u’v’, and v’w’

« Extending the TKE concept, we define a coherent
Kinetic energy parameter as
CTKE =% [(u'w”)2 + (u’v’)2 + (v’'w’)2)]12
where CTKE is always < TKE and is O in isotropic flow
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NWTC ART Flap DEL vs pk CTKE
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High Blade Fatigue Loads are Induced by Intense,
Fluctuating Vertical Transport of CTKE

Variation of Flapwise DEL with Standard Deviation of Vertical Flux of CTKE
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Variation of Hub Peak CTKE with o (z)
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Vertical Flux of pk CTKE by Height

Variation of Blade Flap DEL with Peak Vertical Flux of CTKE
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Indicates strong vertical transport of coherent turbulence is taking place at NWTC
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San Gorgonio Diurnal Variations of Flap DEL and

Inflow Parameters
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CTKE - cont'd

 CTKE is easy to measure with the three-axis sonic
anemometers we have used to measure the turbulent
properties of the inflows to the San Gorgonio Micon
65 turbines and the NWTC ART.

e On the average, the ratio of CTKE/TKE is about 0.4
but it can range from 0.2 to 0.9.

 CTKE represents the intensity of turbulent coherent
elements in the flow as they pass through the
measurement volume of a sonic anemometer.
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Our Conclusions Are ...

 The largest turbine fatigue loads are primarily associated with
slightly stable conditions within a narrow range of the turbine-
layer gradient Ri stability parameter

 They are often not associated with the high values of 5, or
turbulence intensity (c,/U)

 The vertical transport of coherent turbulence energy from above
and within the wind farm rotor disk layer is a major contributor to
high fatigue loads.

e [tis important when simulating turbine inflow turbulence to
Include the ability to (1) model a range of stability conditions and
(2) develop a method to include organized, turbulent structures.
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Problem:

 Modern multi-megawatt turbines often operate their
rotors simultaneously in both the surface and mixed
layers

 NoO consensus on the best way to scale turbulence In
this layer. Some form of a combination of SL and
local scaling is generally used

 We have found that the average height of the SL is
the order of 50-60 m and higher during the day and
lower at night

e We have scaled it in our TurbSim code from actual
measurements taken at two locations: the NWTC
Test Site and Lamar, Colorado

National Renewable Energy Laboratory Innovation for Our Energy Future



Defining Additional Flow Variables for Coherent
Turbulence

 We would like a single variable that reflects the
Intensity of highly correlated turbulent structures seen
In the three cross-axis Reynolds stresses
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