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CHAPTER. I

INTRODUCTION

Since the publication of "Applied Aerodynamics of Wind Power Machines”l
in 1974, additional work has been accomplished on analytical performance per-
diction methods for wind turbines. This report summarizes the state-of-the-
art of performance prediction methods for both horizontal and vertical axis
wind turbines.

Strip theory methods for horizontal axis wind turbines are evaluated for
various tip loss models in Chapter 2. A comparison of these tip models is
developed for the ERDA-NASA MOD-0 rotor. The occurrence of multiple solutions
in strip theory analysis is discussed and illustrated. Chapter 2 also treats
the performance of high-solidity turbines such as the Chalk design. Correc-
tions to the strip analysis techniques are developed and incorporated into
the analysis used for conventional horizontal axis wind turbines. The pre-
dicted performance of the Chalk Turbines is presented and discusséd.

The configuration and perfqrmance of optimum horizontal axis wind tur-
bines is addressed in Chapter 3. While optimization techniques are well
developed for propellers, the situation is not as straightforward for wind
turbines. Optimization schemes are developed and discussed and comparisons
with the MOD-0 rotor are made. Performance at off-design conditions is also
eiamined.

The final two chapters deal with performance prediction methods for
vertical axis wind turbines. In Chapter 4 the performance model for the
Darrieus Rotor is developed. Both linear and non-linear theories are devel-

oped. Multiple solutions are found to occur for Darrieus Rotors in the same




manner as occurs for horizontal axis rotors. This flow model is compared to
existing experimental data and shown to yield excellent agreement.

Chapter 5 contains an analytical model of the flow in a Savonius Rotor.
The flow model is shown to predict the essential features of flow in Savonius

Rotors with consideration of viscous effects.

1.1 WIND TURBINE TEST DATA

The amount of test data available for wind turbines is surprisingly small
and because of the scarcity of test data, performance analysis techniques
often lack adequate verification. In the case of horizontal axis wind tur-
bines there exist only two series of wind tunnel model testsz’3 that are fully

documented. Figures 1.1.1, 1.1.2 and 1.1.3 illustrate presently available test
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Figure 1.1.1 Experimental Data Envelopes for Horizontal Axis Machines.




data for various types of wind powered machines. Figure 1.1.3 illustrates the
maximum values of the power coefficient that have been measured for each general
type of machine. Again the present lack of experimental data for horizontal

axis wind turbines is noted, particularly at high tip-speed ratios. In each
chapter, available experimental data is compared to theory. The blockage effects
for wind tunnel testing of wind turbines are large and in many cases in litera-
ture, no mention is made of the magnitude of the blockage corrections. Accord-

ingly, the next section includes a discussion of wind tunnel corrections.
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Figure 1.1.2 Experimental Data Envelopes for Vertical Axis Machines.
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1.2 WIND TUNNEL CORRECTIONS FOR WIND TURBINE TESTING

The wind tunnel imposes a constraint on the wind turbine by limiting the
extent of the free air stream. The flow past the wind turbine is constrained,
and the uniform axial velocity V_ which occurs in front of the wind turbine
differs from that which would occur if it was operating under the same torque
conditions in the free stream. In general, it turns out that the equivalent
free stream velocity V' is less than that of the wind tunnel. The magnitude
of this reduction can be determined by applying the axial momentum theory,

which neglects the rotational motion of the slipstream. Using the method

developed by Glauert12 for propellers, the correction for blockage may be deter-

mined for wind turbines. Figure 1.2.1 gives the power coefficient corrections

as a function of the observed thrust coefficient.
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Figure 1.2.1 Blockage Correction for Wind Turbine Testing.
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CHAPTER II

PERFORMANCE AERODYNAMICS OF HORIZONTAL AXIS ROTORS

INTRODUCTION i

The propeller type wind turbine can be considered to be an airscrew
which extracts energy from the driving air and converts it into a mechanical |
form in contrast to a propeller which ekpels energy into the air from another
energy source. The similarity of the propeller and the wind turbine enables
the same theoretical development to be followed for performance analysis,

Propeller theory developed along two independent methods of approach, one of-

which has been called momentum theory and the other, blade element theory.

Momentum theory was first developed by W. J. M. Rankine1 in 1865 and
later improved by R. E. Frcudez. The basis of the theory is the determin-
ation of the forces acting on the rotor to produce the motion of tﬁe fluid.
The theory has been useful in predicting ideal efficiency and flow velocity,
but it gives no information concerning the blade shape necessary to generate
the fluid motion. Rotational effects of the wake were included in the theory
by A. Betz3

Blade element theory was originated by W. Froude4 in 1878 and developed

by S. Drzewieckis. The approach of blade element theory is opposite of that
of momentum in that the concern is with the forces produced by the blades as
a result of the motion of the fluid. It was hampered in its original develop-
ment by lack of knowledge of sectional aerodynamics and mutual interference

of blades.




Modern propeller theory has developed from the concept of free vortices
being shed from the rotating blades. These vortices define a slipstream
and generate induced velocities. The theory can be attributed to the work
of Lanchester6 and Flamm7 for the original concept; to Joukowskis, for
induced velocity analysis; to A. Betzg, for optimization; to L. Prandtllo
and S.'Goldsteinll, for circulation distribution or tip loss analysis; and

H, Glauertlz’ 13 and 14

, E. Pistolestils, and S. Kawadal6, for general
improvements. The theofy has been referred to by a number of names:
vortex theory, modifiéd blaéé element theory, and strip theory.

This is the most frequently used theory for performance analysis of
propellers and helicopter fgtors, although{mgre elegant methods of analysis
are available. The technique, which assumesaidcale—D flow at each radial
rotor sfation; is a desigﬁ—analysis approach in which the airfoil sectional
aerodynamics, chord and pitch angle are required in order to determine the
forces and the torque.

It has been assumed that strip theory approaches will be adequate for
wind machine performance analysis; however, experimental verification is
sparse and clouded by the fact that the available test data has been taken
in a Reynolds Number range for which the section aerodynamics are quite
sensitive to free stream turbulence. One reason for the belief that strip
theory is ekpected to givé acceptable results is the fact that a wind turbine
wake ekpands rather than contracts. At low advance ratios (high tip speed
ratios), propellers and helicopter rotors have been observed to shed strong
tip vortices. Since the wake is contracting, the position of this vortex

in the wake is inboard of the tip and strong interaction occurs between the

tip vortex and the flow in the plane of the blade. The resulting radial
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distribution is found to be appreciably different than the force distri-
butions predicted by strip theories. Because most wind turbines operate

at high tip speed ratios, a stfong interaction is expected; however, due

to the ekpanding wake, the tip vortex moves outboard negating a strong
interaction. From an outboard position in the wake, the tip vortex gener-
ates induced velocities that decrease the local angle of attack, in addition
these velocities are of lower magnitude than for inboard vortex positions

of a contracting wake.

Strip theory analysis requires some modifiéation because of the pattern
of shed vorticity, even in the absence of tip %Ortices. The shed vorticity
interacts with the blade flow near the blade tip. So-called tip losses
have been treated in a variety of approaches, the simplest of these being
to reduce the makimum rotor radius to some fraction of the actual radius
characteristically on the order of 97% of the actual radius. Prandtl and
Goldstein have analyzed flow about lightly-loaded propellers (negligible wake
contraction) and developed models for the reduction of circulation due to
wake interaction at the tips.

The basic theoretical development of strip theory is presented in this
chapter, along with the use of tip loss models and a comparison of results

using different models.

2.1 AXIAL MOMENTUM THEORY

The function of a wind turbine is to extract energy from the air and
to produce mechanical energy which later may be transformed into other forms

of energy. Energy losses, in addition to the energy extracted, are attributed
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to the rotational motion of the fluid that is imparted by the blades and
frictional drag. As a first‘approximation to determine the'maximum possible
output of a wind turbine, the following assumptions are made:
1. Blades operate without frictional drag.
2. A slipstream that is well defined separates the flow passing
through the rotor disc from that outside the disc.
3. The static pressure in and out of the slipstream far ahead of
and behind the rotor are equal to the undisturbed free-stream
static pressure (pz =p.)-
4, Thrust loading is uniform over the rotor disc.
5. No rotation is imparted to the flow by the disc.
Applying the momentum theorem to the control volume in Figure 2.1.1, where

the upstream and downstream control volume planes are infinitely far removed from

the turbine plane, one obtains:

cv
e R
- - streamtube
- -~ 4 b
V2 L‘: E(\“*\ Vm
P, ke P~ NP* "““"ﬁipw
= \ o
g - < U - :]
t: \ ::]
= . ----—""§
= _ =~ “PROPELLER b
C - -
= i
- __ i

Figure 2.1.1. Control Volume of a Wind Turbine
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-T = Momentum flux out - momentum flux in
T=m(V_ - Vz) = pAU (V_ - V2) (2.1.1)
Also from pressure conditions, the thrust can be expressed as:
+ -
T=A(P -p) (2,1.2)

Now applying Bernoulli's equation to flow upstream of the wind turbine,
one obtains '

2 :
5V2 4 p = 3pU” 4 pt (2.1.3)

and downstream of the wind turbine,
2
WV, * P, = U7+ p (2.1.4)
or by subtracting these equations
2

P 2
P -Pp =J§pcvw-v2)

Substituting into equation 2.1.2 gives

2 2

T = %pA(Vm - VZ) (2.1.5)
Now, equating equation 2.1.5 with 2.1.1 provides

1 2 . 20

AV - Vz) = pAV(V_ - VZ)
or

Vv +V
g=->__2
> (2.1.06)

This result states that the velocity through the turbine is the average of
the wind velocity ahead of the turbine and wake velocity aft of the turbine.
Now defining the axial induction factor a by

Us Vv (1-a)
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and using the definition of a and equation 2.1.6 gives

Voo + V
2

V. -a = 2

then the wake velocity can be expressed as

V2 =V (1L - 2a)

The wake induced velocity is twice that of the induced velocity in the
plane of the rotor. This also may be concluded by constructing a system of
helical vortices and calculating the induced velocity by utilizing the Biot -
Savart relation. (see Section 2.10)

Therefore

2V, (2.1.7)

which implies that if the rotor absorbs all the energy, i.e., V2 = (0, then a
would have a maximum value of %. Because power is given by mass flow rate

times the change in kinetic energy, the power, P, is

. R I 2
P = mAK.E. = pAUl>— - 7= = 3pAV. 4a(l - a)
or
3 2
P = 2pAVma(l'— a) (2.1.8)

. dpP

Maximum power occurs when =— = 0
dp

3 2
95 = 2PAV] (1 - 4a + 3a7) =0
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or

a=1or1/3
Maximum power occurs when a = 1/3 so

‘ 3
- 1
P = 16/27 ((0AV)

The coefficient of power* equals approximately 0.593.

* . Power

3pAV

(93]

[==]
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2,2 MOMENTUM THEORY FOR A ROTATING WAKE

The initial assumptions of axial momentum theory considered no rotation
was imparted to the flow. It is possible to develop simple and useful re-
lationships if we consider the angular velocity, w, imparted to the slip-
stream flow to be small in magnitude when compared with the angular velocity,
Q, of the wind turbine rotor. This assumption maintains the approximation of
axial momentum theory, that the pressure in thevwake is equal to the free-

stream pressure.

-~ o
L.

R b diR -~

2 ! -
N

; N , —
Rotational Flow | Non-Rotational Flow —V_

E
\ e ——— —

S

e Rotating Device

Figure 2.2.1. Flow Diagram of a Wind Turbine.

Writing the energy equation for the flow illustrated in Figure 2.2.1, it can
be shown that the rotational kinetic energy reduces the power that can be

extracted.

= Power Extracted + K.E + XK.E

K'E'translational 'translational(z) ‘rotational

(1) (2
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The power is equal tb the product of the torque acting on the rotor,

Q, and the angular velocity of the rotor, Q. In order to obtain maximum
power it is necessary to have a high angular velocity and low torque
because high torque will result in large wake rotational energy. An

angular induction factor is defined as:

_ angular velocity of the wind. at the rotor _ w (2.2.1)
twice the angular velocity of the rotor 29 T

al

Figure 2.2.2 Rotor Blade Element

Using the angular ring in Figure 2.2.2, and writing control volume relations
for momentum and moment of momentum, we obtain: (taking into account blade

coning)

dT = pUZ'rrrLer(V00 - Vz) where r,o= TCOoSY
er
(7

dr cosy

coning angle.




Assuming that

= 2aV
2) o

_ 2
dT = 4anpra(l—a)er

v, -V

The moment of momentum equation becomes

= dn = 2
dg = dm(Vtr) = ZerpUer er

= 4'nr3 V (1-a)a'@ d

B R

As dP = 2 dQ
R
P = f 9 dQ
0
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(2.2.2)

(2.2.3)

Now, substituting equation (2.2.3) into the integral equation for power:

Rcosy

P = 4npvw92(1 - a)a'ri er

r Q

=

defining x, =

L as the local tip speed ratio

7

- RQ cosy
and Xw =~

we obtain

where R is the rotor radius

X
3 4 cosly \ 3
_ cos ¢ _
P = OAVoo — ~/~ (1 a)a' XLdXL-

0

(2.2.4)

(2.2.5)

(2.2.6)
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where A = ﬂR2- The coefficient of power becomes

8

C = — cos

P 2
P

X

L
wa Xia'(l - ajdxp (2.2.7)

0
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2.3 BLADE ELEMENT THEORY

By determining the forces acting on a differential element of the blade
and then integrating over the length of the blade, torque and thrust loading
of a rotor may be determined analytically. The fundamental assumptions are
that there is no interference between successive blade elements along the
blade and that the forces acting on a blade element are solely due to the
1ift and drag characteristics of the sectional profile of a blade element.

In an actual wind turbine, the blades may be made so that they cone.
Without coning the force coefficients can be represented as shown in Figure
2;3.1 (=0) and with coning as in Figure 2.3.1 (y#0). Note that only the

normal force coefficient is affected by coning.

I (l-a)V,

Figure 2.3.1 Blade Coning
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The force coefficients in the coned position may be written as

(@]
H -
1}

C. cos¢ costy +C_ sing cosy

L

. CL sing - C

D

coso

@]
n

D
Also, the radial distance must include the effects of ¢y. Thus

rL =7 cosw

er = dr cosy

By using the velocities determined from the momentum theorem and
applying them to the blade element, the velocity diagram, Figure 2.3.2

is obtained.

nd A

V,, (1-a)cosy

Figure 2.3.2 Velocity Diagram




From Figure 2.3.2, one can see that

\Y
tan¢g = %i%W §f;3if
L
o =¢ -0 _
Cn = (CLcos¢'+ CDsin¢)
Cﬁ = Cn cosy
Ct = CLsin¢ - CDcos¢

By determining the thrust acting on the blade element, one obtains

2 4

dT = BcipW Cﬁ <057 (2.3.1)

1)

where B number of blades

chord

I

c

The torque acting on the blade element is given by the following expression

dr

t cosy

T

2
= 1
delade element I‘LBCCZDV" )¢ (2.3.2)

21
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2.4 STRIP THEORY

Utilizing both the Axial Momentum and Blade Element Theories, a

series of relationships can be developed to determine the performance

of a wind turbine.

By equating the thrust determined from the momentum theory equation

(2.2.2) to equation (2.3.1), the thrust determined by blade element theory,

one obtains for an annular element at radius T,

dT
momentum

or
dr
2 ol w2 L
4ﬂerVwa(1—a)er = BezpW Cj cosD
SO
o] 2 C!
LW ™
(1—3.) (2&) = Z——\;;z; COSl!}
where
s = BS_
L ﬂrL
and
Bc
5 =

m TR cosy

From Figure 2.3.2 one can write

(l—a)Vmcosw
sing = W

- dTblade element

(2.4.1)

(2.4.2)

(2.4.3)
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substituting this expression into equation 2.4.1 for the relative velocity W

2 2
' —
GLCn(l a)” cos ¥

2a(l-a) = 5
4 sin”¢ cosy
or
GLCn coszw‘ i
T =~ > o o (2.4.4)
8 sin"¢ ;

Expression (2.4.4) now relates the axial flow conditions to the blade
element geometry. By considering the moment of momentum, we;éan likewise
develop a relationship between the rotational flow and blade element forces.

Equating the angular momentum determined from the momentum theory,

equation (2.2.3) with equation (2.3.2) of blade element theory one obtains

anngular momentum 4Qy1ade element

or

2 . _ 142~ dT
4ﬁerVw(1—a)a Q rLdr = rLBcpzw Ct o5V

or

cosyV_(1-a)2a'@ r = %GLth, (2.4.5)
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From Figure 2.3.2

(l—a)Vmcosw
W
r.

L
W

sin¢g =

cos¢ (1+a")

substituting into eQuation (2.4.5)

. - 0.C
. _ L't
Tra7 sing cos¢ = 7
or
a' _ OLCt
1+a! 8 sin¢ cosé (2.4.6)

Equations (2.4.4) and 2.4.6), which determine tﬁe axial and angular inter-
ference factors contain drag terms. It has been an assumption that the
drag terms should be omitted in calculations of a and a'i-on the basis
that the retarded air due to drag is confined to thin helical sheets in
the wake and have little, if any, effects on the induced flows. Therefore

Cn and Ct used in calculation of a and a' are redefined as

CL cosd

i

c

CL sing

"
Ct

so Equation (2.4.4) becomes

2
a oL CL cos ¢y cos¢
T-a 5 (2.4.7)
8 sin ¢




and Equation (2.4.6) becomes

a' _ %L CL
1+a! 8cos¢

(2.4.8)

By using the relations developed, a and a' can be determined for
a given differential element by the following iteration process:

1. Assume a and a'

2. Calculate ¢ : ¢ tan—l[(l-a)cosw/(1+a’)x]

)

3. Calculate o : o

o -0
4, Calculate CL’ CD, Ct’ Cn
5. Calculate a and a' ; equation (2.4.7) and equation (2.4.8)
6. Compare to previous values of a and a' if equal, stop
7. Go back to 2,
Having determined a and a' by the abové iteration process, we also have

calculated Ct,and Cn' We can determine torque, thrust, and power from the

following equations:

%
zpvzﬂRscosw3 v )
Q = XZ ./. cm(W/Vw) Ct dexL
v 0
X
%OVinchoszw i 2
T = Xw .’- om(W/Vm) ,Cn de
0

X
= §§- ~/~ X a'(l- a)dx
d) .
0
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The above equations do not include tip loss and blade interference
effects. Modifications to account for these effects as well as defining
sectional aerodynamics are necessary for a meaningful solution to the system

of equations. These areas are developed in subsequent sections of this

chapter.
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2.5 MULTIPLE SOLUTIONS IN STRIP THEORY

The equations for the induction factors a and a' do not always have
a single unique solution17. This can be illustrated by graphically
examining the blade force and momentum terms in equation (2.4.1). If we
defined a local force coefficient, CT , as

L

C,. = ;T—foz————— » (2.5.1)
L ngwZWTLer
both sides of equation (2.4.1) may be expressed in dimensionless form.
The momentum contribution becomes

Cr ) = 4a(l-a) : (2.5.2)

L .
momentum
and the blade force contribution becomes
2
[A)
GLCn(l—a)

c ) ) (2.5.3)
T) 7
Yplade ~ 2Sin ¢

The momentum equation is seen to be pafabolic while the blade equation
depends on the relation betweéﬁ the 1if£ coefficient and the angle of
attack, the local solidity, and the tip speed ratio.

The equation for the blade force may be simplifiea considerably by

neglectihg the induced rotation. Then equation (2.5.3) becomes

/2 2
xoLCL /X +(1-2a)

=3 | (2.5.4)

CTL)
blade
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where x is the local tip speed ratio rLQ/Vw. Thus both equations may be

expressed in the form

The blade equation, of course, also requires specification of the blade
configuration in terms 6f the parameters g X and CL(a). For the case
where CL = 2msina, the blade equation becomes a straight iine passing
through the point CT = O,Aa = 1 when the pitch angle is zero. The

slope of the blade eguation depends upon the local solidity and the local
tip speed ratio. There is then fOT CL = 27sina, one and only one solution
that satisfies both the momentum and blade equatioms.

For other 1ift coefficient variations, however, multiple solutions
may occur. Figure 2.5.1 shows the momentum and blade force equations
plotted in dimensionless form. It may be observed that the blade equation
retains the general shape of the 1ift coefficient versus angle of attack
curve. While only two 1ift coefficient variations are illustrated it is
apparent that under some conditions there may be three valid solutions
to the strip theory equations. Values of the axial induction factor a
greater than 0.5 are not valid because such conditions imply a wake
velocity which is negative. ‘

Figures 2.5.2 through 2.5.4'show the effects of blade pifch angle,
tip speed ratio and solidity on the blade force‘equations. .Again, it 1is
apparent that under some conditions three valid solutions exist to the
strip theory equations. The method outlined in Section 2.4 will converge
to either solution number ome or solution number three but will not
converge to the middle solution. The reason for the lack of numerical

convergence for the middle solution is that when dCTL dCT the iteration

L
da

blade da momentum
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dc dc

converges, and- when , the iteration sequence

& ), T &
diverges.

The 1ift curve selected is meant to be representative of a broad class
of 1ift curves for which the 1ift has a sharp maximum and then levels off.
While it is recognized that the numerous uncertainties make it improbable
that performance test data can verify which othef solutions occur (if any!j
this discussion has been presented to enable performance and structural
analysts to be aware of the multiple solutions possible iq strip theory
analysis. | |

As a guiding principle, it is suggeéted that the soiutionrﬁé be chosen
in the case of multiple solutions is the one that’maintains.cdntinuity of

angle of attack along the blade span.
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2.6 TIP LOSS CORRECTIONS

Strip theory, as previously developed, does not account for the
interaction of shed vorticity with the blade flow near the blade tip.
This "tip loss" or circulation reduction near the tip can be explained
by the momentum theory. According to the theory discussed previously,
the wind imparts a rotatioﬁ to the rotor, thus dissipating some of its
kinetic energy or velocity and creating a pfessufe difference between

one side of the blade and the other. Because the pressure is greater

on one?j' é; air will flow around the blade tips as shown in Figure 2.6.1.
This meaﬁs that the circulation is reduced at the tip and as a consequence

the torque is reduced.

Figure72.6.1 Tip and Hub Losses-Flow Diagram



33

Because the hlade element forces at the tip contribute greatly to the
torque and thus to the overall performance of the wind turbine, the tip
flow is very important to the analysis. Tip losses have been treated in a
variety of different manners in the propeller and helicopter rotor industry.
The simplest method being to reduce the maximum rotor radius by some fraction
of the actual radius, which in helicopter studies is of the order of 0.03R.
Other relations have been developed that calculate this fraction of reduction
based on the tip chord length. A more detailed analysis was done by Prandtl
as a method for estimation of lightly loaded propeller tip losses. Later,
Goldstein developed a more rigorous analysis. A comparison of the circula-
tion distribution of a two-bladed propeller using the Prandtl and Goldstein
methods is shown in Figure 2.6.2. Figure 2.6.3 shows numerical énalysis of
a wind turbine desigh using different tip loss models. As can bevseen, there
are substantial differences between methods and the application of thesé

methods to wind turbines raises the question of which method is most accurate.

THE DISTRIBUTION OF CIRCULATION ALONG A PROPELLER BLADE

——— GOLOSTEIN'S EXACT SOLUTION

o " PRANDTL'S APPROXIMATION
PP Y ik o et N e 2

o.8 4;'?;;3‘~ ;:{:.\‘.\\\\ '\\: \\\\‘L\\‘

. ,”;: T \\’4 \\\ \\ \i\ \\\ \\\
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Figure 2.6.2 Circulation Distribution Along a Blade for a Two Bladed Propeller
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Figure 2.6.3 Performance Variation with Tip Loss Model.

Due to the lack of verification, the theoretical and computer analysis
has options of either no tip loss, Prandtl's tip loss, Goldstein's tip

loss or the effective radius concept of tip loss.
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PRANDTL TIP LOSS FACTOR

L. Prandtl10 developed a method to approximate the radial flow
effect near the blade tip. The basis of his approximation was to replace
the system of vortex sheets generated by the blade with a series of parallel
planes at a uniform spacing, %, where % is the normal distance between suc-

cessive vortex sheets at the slipstream boundary, or

_ 2mR .
L= B sin ¢T

Here B represents blade number and ¢T is the angle of the helical
surface with the slipstream boundary. Thus, the flow around the edges
of the vortex sheets could then be approximated as the flow around the

edges of a system of parallel planes.

Prandtl's factor is defined as

2 -
F = = arc cos e
o] T
where
f=%Rl§£§¢
- T

The expression for f can be suitably approximated by writing rsin¢ in place
of Rsin¢T, because local angles of ¢ are more convenient in calculation
procedures. Prandtl’'s approkimation, as one can see from Figure 2.6.2, is
sufficiently accurate for high tip speed ratios when the number of blades
ekceeds two. Of course, it should be remembered that the approximation

was developed for a lightly loaded propeller (contraction negligible) and
that the Vortek system is a rigid helix, én optimum condition for propellers.

Neither of these conditions are necessarily valid for wind turbines.




36

GOLDSTEIN TIP LOSS FACTOR

Goldstein11 developed a more accurate analysis of tip loss for

propellers by determining the circulation along the blade in terms of

the induced velocity for a rotating blade. He also ignored contraction

and utilized the rigid helix vortex representation. His solution was

obtained by solving Laplace's equation with suitable boundary conditions.

Goldstein's tip loss factor is

where

- 1+ uz T
2 VW
u

angular velocity of rotor

" local radius

makimum.blade radius

advance velocity of helical vortek surfaces
velocity of advance

local tip speed ratio

tip speed ratio of rotor

bound circulation around the blade section
coefficient in T distribution
approkiﬁation coefficient to amﬁs

correction factor to approximation coefficient, Am

‘modified Bessel function of ISt kind

modified Lomme function or Goldstein function defined in Ref.

2 —
© U I (Zm + 1 1)
Glu) - %_ $ o} . Am _ Em) 2m+1
m=0 1+uo 12m+1(2m + 1 uo)

11.




2m+l(u) = z T1,2m+1 (Zm + 1 1)

As one can see from Figure 2.6.2, Goldstein's analysis should be used

for the oné and two-blade cases and for.low tip speed ratios. A disadvant-
age of this method is the complekity of the solution which involves

Bessel functions, but with the use of a digital computer and suitable

approiimations it can be easily handled.

EFFECTIVE RADIUS TIP LOSS CONCEPT

The tip loss model that has been used by NASA and the helicopter
industry is ome in which the rotor radius is reduced to an effective

radius, Re:

where BO is a constant (input) tip loss factor.
Then with Re defined, radial integration proceeds inward from the tip,

setting C, = 0 at all integration steps greater than R For specific

L E’

integration around Re’ the integration step is changed to evaluate condi-

tions at R_and let C. = C * €. at that station, where
e L LF L

CLF(ReJ = R -1y )/ (ry 1-19)

37
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as shown in Figure 2.6.4.

C
Lf

1.0

Figure 2.6.4 Variation Function for Lift Coefficient using
Effective Radius Concept.

TIP LOSS FACTOR APPLICATION

The application of Prandtl's or Goldstein's tip loss factor to
previous developed strip theory is of great importance. The tip éorrec—
tion represents phfsicaily the fact that the maximum decrease of axial
velocity 2aV_ in the slipstream occurs at the vortex sheets and the
average decrease is akial velocity in the slipstream is only a percentage
of this velacity. Therefore equations (2.2.2) and (2.2.3) of axial

momentum theory assume the forms:

ar .2 .

ar _ - 2.2
e 4mrpV_ (1-a)aF (2.2.2)
3—3 = 4vr3prQ(1—a)a'F ) o (2.2.3)
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In combination with blade element theory, equations (2.4.7) and (2.4.8) of

general strip theory assume the forms:

o C cdszwcos¢

L7L
LI (2.6.1)
1-a 8F sin’¢
G C
a' _ L'L
1+a' = 8F coso : (2.6.2)

Another application approach has been suggested by Wilson18

Since thrust is determined by
Tmomentum - dTblade element

- B wla
pUAVZﬂrL er =5 oW Cn cer

Consider the induced axial velocity to be localized at the rotor blade in

a manner similar to the induced rotational velocity. Thus U = (l-aF)VOo and

AV. = 2aFVoo so we obtain

¢ C,cosd o, C.cosd
(1 - aF)aF = LL (l-a)z = S(l-a)2 where S = —LL—Z—*—
8sin ¢ . 8sin”¢
then
2
a = 28 + F - //F + 4SF(1 - E) (2.6.3)

2(S + F9)

and a' is as previously defined (2.5.2)

As F > 1

s S
1 + S

whereas when F -+ 0

a1
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Because there is uncertainty as to which approach most accurately
corrects the basic strip theory, both methods are considered in the
analysis. The first method discussed being referred to as the first
order or standard method of tip-losé application and the second method
suggested by Wilson as the second order method of tip loss applicatiom.

HUB 'LOSS ' (INNER BLADE TIP LOSS) EFFECTS

Another factor is the inmer blade tip loss, when there is no hub.
Prandtl's tip loss formula has been applied in the following way to account

for this, and is considered sufficiently accurate for this purpose.

2 -
F = ;-arc cos e

- BT " Thub
f=3+ sine
hub_
where
rhub = radius of hub

This is applied to the gemeral strip theory by defining the tip loss
factor as ,
= *
FTotal FTip FHub

and applying either the first order or the second order method to the

strip theory.
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2.7 CASCADE THEORY

For high solidity wind turbines, it is necessary to account for flow
blockage of the air as it passes through the turbine blades and also
to account for the finite chord of the blade. The velocity of the air
relative to the blade element is the resultant of the velocity through
the Wind turbine plane of rotation, v _(1-a), and a rotational component
Qr(l—a') as shown in Figure 2.2.2. If at a given radius of the turbine,
r, the circumference can be unrolled and represented as a flat surface
as shown in Figure 2.7.1. The blade elements are represented as a
cascade of airfoils along an axis LL, where the distance between airfoils
sections is 2mr/B. The cascade of airfoil sections representing B
blade elements df’the turbine must be repeated to form an infinite cascade

of airfoils.

v, (1-q)

Figure 2.7.1 Cascade of Airfoil Sectionms
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Immediately in front of the wind turbine, the effective axial velocity (Free
stream velocity minus the axial induction velocity) and the rotational velocity
define the velocity state as shown in Figure 2.7.2. As the flow enters the
cascade of airfoils, the axial velocity must increase to satisfy continuity since
the cross sectional.area of the channel decreases. As the flow proceeds, thé
tangential component of induced velocity increases from zero at the leading edge
to (2a'Qr) at the trailing edge. As the flow passes the cascade, the tangential
component of velocity remains unaitered, while the axial component must decrease
again by continuity; because of this, the flow traces a curved path which effec-
tively increases thé camber of all sectioms.

The followiﬁg assumptions are made és given by McCormig:k19 for propeliers:

l.- The tangential velocity varies linearly from 0 at the leading edge to

2a?9f at the trailing edge.

2. The flow angle 6 is the slope of flow at any point at a distance y

from the leading edge.

Figure 2.7.2 Flow geometry of a cascade of airfoil sectionms.




Therefore

vV _(1l-a)

tan 6 =

Qr(l+2 %fa')

and the change in 6 from the leading edge to.the

V (1-a) V (1-a)
A0 = tan l o tant 2
- Qr(1+2a') Qr

The effective change in the camber ratio become

>
On
1
mID
@
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(2.7.1)

tralling edge is

(2.7.3)

For a circular arc airfoil, this corresponds to a reduction in the angle

of attack of the zero 1ift line of

Ao =

EFFECT QF THICKNESS

(2.'7.4)

To consider the effect of thickness, the airfoil can be approximated

with an ellipse of the same thickness to chord ratio. Let us define:

y y 21/2
t=t o 27 - (3759 ]
_ Be
97
x = /R
RO
X=yv

distance from the leading edge

«
it

(2.7.5)
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From continuity

2 1/2
2meV,, = V() {2nr - Be (2075 - (G 1} (2.7.6)
and
6 = tan L YO
wr
or
-1 1/X
= tan ot 2 1/2
1—=(D-B 1 3
then

Integration gives

c
B -1 1
Zmax = f(e-tan 76(—) dy
0

which leads to

max -11 y

Ao = < - f (6-tan fX}—) d(E—)
O .
or
1

Aa = 4 X ° tmax

T 15 S 1.2 2 c

_ (G +x7)

In performance calculations, the sectional angles of attack are

reduced by the amounts given by expressions (2.7.4) and (2.7.7).
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The Chalk Wind Turbine invented by Thomas 0. Chalk, marketed by

the American Wind Turbine Company as the SST (Super Speed Turbine) and

commonly referred to as the Bicycle Wheel Wind Turbine has been analyzed

using the analysis previously discussed including the cascade corrections.

The design specifications used appear in Table 2.8.1. The sectional

aerodynamics for the N60 airfoil were used because of the availability of

low Reynolds Number datazo

and because of the great similarity of

the N60 airfoil to the Clark Y airfoil. 1In addition, the analysis

utilized a Prandtl-tip loss model.

TABLE 2.8.1

BICYCLE WHEEL WIND TURBINE SPECIFICATIONS

Outside diameter
Inside diameter

Length of blades
Number of blades
Chord of blades

Blade pitch

Blade twist

Support wires

Number of wires

Length of hub in axial
direction

Airfoil

15 ft. 3 in.
5 ft. 3 in.
5 ft.

48

3.475 in.
9° outside rim) referenced to
18° inside rim” }rotor plane
9° ‘

0.062 in diameter

not covered by blades = 96

2 ft.
Clark Y

‘Figure 2.8.1 shows as plot of Cp versus tip speed ratio which is

equivalent to a plot of power versus RPM at constant wind velocity.

Figure 2.8.2 is a plot of CP/X3 versus 1/X, which is equivalent to a

graph of power versus‘wind-speed at constant RPM or Figure 2.8.3.

}
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When the analysis was examined it was observed that the rapid decrease
in power at high wind speeds is caused by aerodynamic stall and not by
the drag of the wires, as originally conceived. At high tip speed ratios
the windmill brake/vortek ring states are entered, a state of operation
not covered by the analysis.

Preliminary eiperimental data obtained by Professor Dennis K.

McLaughlin of Oklahoma State University is plotted in Figure 2.8.1.

EXPERIMENTAL FIELD DATA COMPARED
WITH THEORY FOR THE CHALK WIND TURBINE
0.5 Theory
® 19 Nov. 1975
& 13 Dec. 1975 .| Okloghoma State
0.4l. [ Minimum Loading University Data
Ave, of Numerous
Measurements
0.3
Cp
0.2 -
&
0.l |-
o Lt vt 4 oAy 01 b1 1

Figure 2.8.1 Power Coefficient versus Tip Speed Ratio for Chalk Wind Turbine
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Figure 2.8.2 Power versus RPM at Constant Wind Velocity for the Chalk Wind

Turbine

300 -
POWER vs. WIND VELOCITY
AT CONSTANT RPM FOR
THE CHALK WIND
TURBINE

)
o
O
|

POWER (KILOWATTS)
o)
o
!

RPM

WIND VELOCITY (MPH)

Figure 2.8.3 Power verus Wind Speed at Constant RPM
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2.9 VORTEX RING/WINDMILL BRAKE STATE

The flow model developed by strip theory breaks down when the axial inter-
ference factor a exceeds 1/2*%. This may be illustrated as shown in Figure
2.9.1 which shows the momentum equation and the blade element equations for

L

zero drag and C, = 2nsina. The boundary between the momentum theory and vortex

ring/windmill brake state can be expressed approximately by the relation

1 T
g 2 =—— -
2
2x Bcx
where 6 = ange of zero lift measured from the plane of rotation
. . T
x = local tip speed ratio, T
r = local radius

¢ = local chord ,

B = number of blades

o PROPELLOR <+~ WINDTURBINE
BLADE FORCE EQUATION
- | |
1.0 - N
. MOMENTUM N
T, EQUATIONNSN, \

0 s

-1.0 7
-0.5 0 0.5 1.0 1.5

INDUCED AXIAL VELOCITY

Vo
Figure 2.9.1 Graphic Display of Equations used in Strip Theory

* Actually when (a F) 2 1/2.
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The flow field for the vortex ring/windmill brake state for wind
turbine has not been determined. The flow field is distinctively different,
however, from the flow model of the strip theory model and the previous
approach is not valid for this area of operation.

Empirical work done by H. Glauertzxl and others, redefined in terms
of an average axial interference factor shows the deviation from momentum

theory as shown in Figure 2.9.2 for the overall thrust coefficient, CT.

I l | I
O NACA TN 221-B:=4
20— @ NACA TN 22!- W
A R&M 885-uv /
A R&M 885-cv p
O e
1.6 — o Zi:;yﬁ. -
/,
.“2 ‘o 'O .
L A9
“CTGLAUERT'S CHAR. A S__G‘LAUERT'S )
C CURVE > EMPIRICAL
T .. —  FORMULA
0.8 — _- —
-
- MOMENTUM
: THEORY
0.4 |— —
| i | l
0 0.2 0.4 0.6 0.8 1.0

Axial Induction Factor, a

Figure 2.9.2 Windmill Brake State Performance
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2.10 INDUCED VELOCITY VARTATION

The variation of the axial induced velocity with distance from the
turbine plane is of imporﬁance in the placement of instruments to measure
the true free stream wind velocity.

Calculation of this velocity may be accomplished by applying the
Biot-Savart law to a vortex filament shed from the blade as it moves rear-

ward in a helical manner (Figure 2.10.1).

Figure 2.10.1 Rotor Wake Model

The axial velocity induced by a single helical vortex is shown in Figure 2.10.2.
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Figure 2.10.2 Induced Axial Velocity Variation T = 1+
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CHAPTER III

OPTIMUM-PERFORMANCE, OF HORIZONTAL AXIS WIND TURBINES

INTRODUCTION

It is desirable to know the maximum efficiency that can be obtained from
a wind turbine as well as the configuration required to obtain such perform-
ance. The principal use of such knowledge is expected to be in the evalua-
tion of design tradeoffs rather than in the construction of performance-
optimized wind turbines. While propeller theory has provided the basis for
design analysis of wind turbines, the criteria for optimum propeller perform-

ance leads to a different result than for optimum wind turbine performance.

Figure 3.0.1 Helical wake model.

The optimum propeller was originally investigated by Befz1 who proved
that for maximum blade tractive power the far-wake must move rearward as a
rigid helical surface as shown in Figure 3.0.1. The Betz condition for a
lightly loaded rétor results in the requirement that the wake disblacement

velocity, v”, illustrated in Figure 3.0.2, be constant along the blade.
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(Q-wlr y wr

Figure 3.0.2 Wake flow velocity diagram for a propeller.

Goldstein2 used the Betz rigid wake criteria to determine the exact dis--
tribution of circulation for a lightly-loaded propeller. Theodorsen3’4’5’6’7
extended the Betz criteria to inélude heavy loading since the far wake has

the same appearance regardless of the loading. By redefining Goldstein's solu-
tion for heavy loading and including wake contraction, Theodorsen developed a
theory, for a specified power coefficient, that could be used to determine the
wake displacement velocity; thereby, the optimum design configuration and
optimum performancé could be calculated. Crigler8 presented Theodorsen's

theory for the practical design of propellers, and later Lerbsg’10 presented

a refined approach, similar to Theodorsen's, for the design of marine propellers.

To define an optimum wind turbine, the relation between induced power and

shaft power must be made stationary; while for the propeller, it is the expres-
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sion relating maximum tractive power and shaft power which is to be held
stationary. For a wind turbine, the efficiency depends on the.ability of
the wind to do useful work, UT, on the turbine and to convert that work into
shaft power, QQ. Here 2 is the angular velocity of the turbine, Q the tor-
que, T the axial force exerted by the wind, and U the axial velocity through
‘the turbine. Just as is the case for the propeller, an increase in circula-
tion for a wind turbine will result in an increase in torque AQ and axial
force AT. This may be expressed as the ratio of power output increase to

useful work increase A,

\ - 84
UAT
The procedure used for the propeller to establish that the efficiency is
maximum doés not yield the same result for the wind turbine because a change
in circulation would not only change the axial force, T, and torque, Q, but
also the axial velocity, U. However, it can be established that the induced
tangential velocity for a wind turbine must be a minimum along the blade to
obtain maximum performance. The flow field in the plane of the rotor is shown
in Figure 3.0.3. The expressions for the axial force and torque increments

due to an increment of circulation AT are expressible as

AT = pAT(Q+%err
AQ = pAT(V-v)rdr
or AQ = pATUrdr
Therefore, N
Lo 898 @
UAT
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or

11

A= T l+at

- w
(l+§§

_w
20 7
For a wind turbine we want A to be large; therefore, the induced angular

[

where a'

velocity must be a minimum along the blade. This condition leads to a variable

wake displacement velocity as can be seen from Figure 3.0.3.

A

|

¥
| v
U
) IR

wfl
F)
- : Figure 3.0.3 Rotor flow velocity diagram for a wind turbine.

Near the blade tips, at high tip speed ratios, the optimum wind turbine
experiences a nearly constant wake displacement velocity; however, as the axis

is approached, the displacement velocity increases. Therefore, it is apparent
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that the wake vortex sheet will change shape with distance from the rotor, as
shown in Figure 3.0.4. For this reason, the approaches of Goldstein, Theodorsen,
and Lerbs cannot be used for wind turbines except for high tip;speed—ratio
design, where errors in design specification at inner blade stations are not

critical to performance.

Figure 3.0.4 Vortex system of a wind turbine. The root displacement velocity
is different than at tip.

Rohrbach and Worobel11 have investigated the effect of blade number and
section lift-to-drag ratio on the maximum performance that can be obtained
from wind turbines. Figure 3.0.5 shows the effect of the section lift-to-
drag ratio on peak performance of an optimum two-bladed wind turbine as

obtained by Rohrbach and Worobel. Figure 3.0.6 shows the effect of blade number




58

GLAUERT IDEAL

05 -

04 L

0.3 L
™ L

. ~40 7/,

0.2 & D
L

o4 b /y YARIATION
0 ] L1 3 i — 2

0 4 8 i2 16 20 24

Figure 3.0.5 Effect of‘L/D on peak performance of optimum two-bladed wind

Figure 3.0.6

Effect of number of blades on
turbines (Rohrbach and Worobel

turbines (Rohrbach and Worobel 1).
: GLAUERT IDEAL BLADES
0.6 &
— ] 4
3 .
0.5 L. /// ? .
" 04 L
0.3 -
L) = oo
0.2 = /b
0.1 =
O 2 A A [l 8 A 1
] 4 8 12 6 20 24
X

gﬁak performance of optimum wind
).




59

on peak performance. The calculations of Rohrbach and Worobel have been

found to yield slightly lower maximum performance than found in this study,

the difference being attributedl6 to the fact that they used a finite hub radius.
Glauert12 defined the configuration and performance of an optimum actu-

ator disk by developing a closed-form solution to a variation problem using

strip theory equations. Glauert's solution, however, neglected drag and tip-

loss. This paper presents an approach using modified strip theory that

incorporates tip-loss, determines the lift/drag effect on optimum performance,

and examines the performance of optimum wind turbines at off-design conditionms.

3.1 LOCAL OPTIMIZATION

Optimum performance may be determined by maximizing theApower output at
each station along the blade neglecting drag. The power developed at a dif-

ferential element, dr, located at radial position, r, is

dP = odq = Qch%WZCtdr : (3.1.1)

Defining local and overall tip-speed-ratios and solidity,

_ _ R@ _ Bc
X = , X Vm, and OL =y

the local contribution to the power coefficient is given by

dc x 2 W 2

EEE'z GLCL51n¢(iJ (V:? (3.1.2)
where

c = Power
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dc
The differential contribution P is maximized by varying the axial velo-

dx
city, U, or its dimensionless equivalent, (1-a), until the power contribution
becomes stationary. The equations for linear and angular momentum in the

annular element must also be satisfied. From reference (13), the equation

relating blade torque to the fluid angular momentum is

CL _a'E
8cosd 1+a?

(3.1.3)

The corresponding equation relating the blade force to the fluid linear momen-

tum 1s

IS (1-aF)aF
85in’ (1-2)2

(3.1.4)

Equation (3.1.4) contains a second order contribution from the tip-loss-factor.
While experimental results for wind turbines are not sufficiently accurate to
ascertain.the validity of including the second-order term, the effect of retain-
ing this term in the equations has resulted in significantly reduced numerical
computation times in.design optimization studies performed by Walkerl4

With the aid of the flow geometry at the blade illustrated in Figure 3.1.1,
and Equation (3.1.3), the Equation (3.1.2) becomes

dC 3

P = gar(1- x_
% 8a' (1 g)F xz (3.1.5)

Equations (3.1.3) and (3.1.4) may be combined to give

a(l-aF) = a'x*(1+a') (3.1.6)

i
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Figure 3.1.1 Blade flow velocity diagram.

The last two equations have been obtained using the assumption that only
1ift forces contribute to the induced velocities. It may be observed that if
the tip-loss factor, F, is equal to unity, the above equations reduce to those
of Glauert.

At each radial station, the power contribution is obtained by varying the
axial interference factor, a, until Equation (3.1.5) is maximized. 1In the pro-
cess of maximizing Equation (3.1.5), Equation (3.1.6) must also be satisfied.
Additionally, F is a function of a, a', x and X. Therefore, for each trial
value of a, iteration is required to obtain consistent values of a' and F.

As a result of optimizing the performance at each station, the flow angle,
b, énd the product of cCL are determined as a function of blade radius. The
overall power coefficient is obtained by integrating the power coefficient con-
tributions along the blade. The effect of drag can be determined parametrically

by conducting multiple integrations for a range of blade section L/D ratios.
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The blade twist is not determined by this process because the angle of
attack depends upon CL and only the product, cCL, is available. It is neces-
sary to specify either the chord distribution or the 1lift distribution to

obtain the twist distribution.

3.2 OPTIMUM ROTOR CONFIGURATION AND PERFORMANCE

The parameters that determine the design point of a performance-optimized
rotor are: blade number, tip speed ratio and the section L/D ratio. The
effect of the L/D rétio on the induced velocities is small, well within the
accuracy of experimental measurement. Hence, the rotor configuration was
»determined using the assumption of zero drag and the L/D ratio was then used
to determine the effect of drag on rotof performance. The effect of eaéh of
the design parameters on optimum performance is:

1. Blade Number - the greater the blade number, the better the perform-

ance.

2. Tip Speed Ratio - higher tip speed ratios yield lower induced angular
veloéities; however, the drag effects also increase with increasing
tip speeds. As a consequence, the power output at large tip-speed-
ratios depends on the blade L/D ratio.

3. Lift-to-Drag Ratio - the higher the L/D ratio, the higher the ﬁerform—
ance independent of blade number or tip speed ratio.

In considering a wind turbine design, the question arises as to how many
blades should be used. In general, as the number of blades increases so does
the cost. The advantages of increasing the number of blades'are improved per-
formance and lower torque variations due to wind shear. Furthermore, power

output increases, but with diminishing returns.
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Figure 3.2.1 Blade chord-1ift distributions for optimum performance three-
bladed wind turbines.

The blade configuration for optimum performance requires that the blade
width or chord and the blade twist angle vary continuously and in such a manner
as to produce maximum power at a given tip speed ratio. As an example of a

performance-optimized wind turbine, the blade chord and angle distributions
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change are shown in Figure 3.2.1 and 3.2.2 for three-bladed machines. Note

that as tip speed ratio increases, blade solidity and blade angle decrease.

30° 1

ANGLE OF RELATIVE WIND
DISTRIBUTION FOR OPTIMUM THREE
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Figure 3.2.2 Angle of relative wind for optimum performance three-bladed
wind turbines.
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Table 3.2.1 presents the blade configuration for three-bladed optimum

rotors at various tip speed ratios.

Table 3.2.1 Blade Geometry for Three-Bladed Wind Turbines
X=6.0 X=8.0 X=10.0
Cp =0,535 ) CP -97548 CP =0,555
max max max
/R CCL EEL- 6 cCL o
R R R

1.00 -0.0000 5.000 0.0000 4.000 0.0000 3.200
0.95 0.0498 5.736 0.0290 4.468 0.0189 3.668
0.90 0.0550 6.524 0.0316 5.036 0.0204 4,099
0.85 0.0589 7.129 0.0337 5.464 0.0217 4.422
0.80 0.0627 7.690 0.0358 5.866 0.0230 4.730
0.75 0.0667 - 8.261 0.0381 6.282 0.0245 5.055
0.70 0.0711 . 8.875 0.0407 6.737 0.0262 5.417
0.65 0.0761 - 9.556 0.0436 7.251 0.0282 5.830
0.60 0.0818 10.331 0.0471 7.843 0.0304 6.308
0.55 0.0884 11.229 0.0510 8.535 0.0331 6.870
0.50 0.0960 12.284 0.0557 9.357 0.0362 7.540
0.45 0.1049 13.546 0.0613 10.349 0.0400 8.353
0.40 0.1154. 15.078 0.0681 11.569 0.0446 9.357
0.35 0.1278 16.975 0.0763 13.103 0.0503 10.630
0.30 0.1423 19.369 - 0.0865 15.080 0.0576 12.290
0.25 0.1589 22.460 0.0993 17.710 0.0670 14.534
0.20 0.1765 26.535 0.1148 21.337 0.0794 17.710
0.15 0.1911 32.001 0.1324 26.537 0.0953 22.460
0.10 0.1900 39.355 0.1452 34,207 0.1123 29.995
0.05 0.1446 48.590 0.1263 45.172 0.1091 42,254

In order to specify blade configuration, it is not sufficient to examine

the turbine performance at only the design condition; off-design operation must

also be considered. Figure 3.2.3 illustrates the off-design-tip-speed-ratio
performance of two rotors. Figures 3.2.4 and 3.2.5 illustrate the off-design
blade pitch effects on performance. As can be seen, small changes in pitch

angles have pronounced effects on off-design performance and delay entrance

into the windmill-brake flow state. One may also observe from Figure 3.2.4
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PERFORMANCE COMPARISON BETWEEN THREE BLADE OPTIMUM
ROTORS DESIGNED FOR OPERATION AT DIFFERENT TIP SPEED RATIOS
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Figure 3.2.3 Off-design tip speed ratio performance of optimum performance
' three-bladed wind turbines, designed to operate at tip speed
ratios of six and ten. (L/D = 55, CL = 0.9 at all stations,
NACA 23018 airfoil series.)

that for a design tip speed ratio of ten, pitching the blade in either direction
from the design blade setting, 0°, préduces a smaller power coefficient, signi-
fying an optimum condition as expected. However, we observe that at a slightly
lower tip speed ratio than the design tip-speed ratio (X = 10.0), performance

is higher. This-may be explained by Figure 3.2.6 which shows that for L/D
ranges of 50-75, the power coefficient increases slightly as the tip speed ratio

decreases  from ten.
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Figure 3.2.4 Blade pitch effects on an optimum performance three-bladed
turbine (X . = 10.0,L/D = 55, C
design L
NACA 23018 airfoil series).
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Figure 3.2.5

OPTIMUM PERFORMANCE OF A ROTOR AT CONSTANT RPM
FOR VARIOUS WIND SPEEDS AND PITCH ANGLES
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Figure 3.2.6 Power coefficient variation as affected by drag for optimum
performance three-bladed wind turbines.
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Table 3.2.2 gives a comparison of different methods of computing the max-
imum performance of a two-bladed rotor at a tip speed ratio of 10. The power

coefficients are given for various blade L/D ratios.

Table 3.2.2 Comparison of Various Methods of Maximum
Performance Prediction for a 2-Bladed Rotor
at a Tip Speed Ratio of Ten

C
Method L P ' CP Cp CP CP
D= 100 75 50 25
Local Opt. . 585 .526 .506 .467 . 349
F=1
Local Opt. ‘ . 547 .491 .473 .436 .324
Prandtl
Local Opt. .540 .485 .467 .431 .321
Goldstein
Rohrbach § .51 .46 .44 A1
Worobel ‘ _
Constant o .521 .462 .442 .402 .284

Axial Velocity

The first row gives the performance using Glauert's actuator disk model.
Glauert's results correspond to the limiting case of infinite blade.number;
The second and third rows give the results usingvlocal optimization with thev
Prandtl and Goldstein tip loss models. As can be seen from the values of the
power coefficient, the power determined using the Prandtl model is about 1%
higher than that obtained using the Goldstein model. While the difference in
predicted performance is only 1% the differénce‘in calculation time is more
than an order of magnitude; therefére, the Préndtl tip-loss model has been
used in generating the results given in this paper.

The fourth rbw gives the results of Rohrbach and Worobel. Their
results are seen to yield optimum performance about 5% lower tﬂan per-
dicted using local optimization. The difference is due to a finite hub

radius. The last row gives the results when the power was optimized at
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the 3/4 R blade position and the axial velocity, U, obtained at that blade
position was maintained over the rest of the blade. It may be noted that this
approach ylelds substantially the same results as Rohrbach and Worobel.

The design procedure for determining the optimum blade configurations

can be illustrated with several examples.

Example Case 1. Obtain the blade configuration of a two-bladed wind turbine

for operation at a tip speed ratio of ten and compare its predicted off-design
performance with that determined for the NASA-ERDA MOD-0 turbine.

Procedure

First determine the optimum blade parameéers; cCL/R and ¢. This is accomp-
lished by using the local optimization analysis described in section 3.2. From
this analysis, the angle ¢ and the chord-1ift coefficient/maximum radius ratio
as a fﬁnction of local radius are thained. The variation of these parameters
with radius is shown in Figures 3.2.7 and 3.2.8. The next step is to select an
airfoil section. For this example, we will chéose NACA ?%inle 23018, the air-
foil section used on the NASA-ERDA MOD-0. The L/D maximum for this airfoil
occurs near CL = 0.9, at an angle of attack equal to 8°. It may be noted that

the L/D ratio varies only slightly in the C, range from 0.6 to 1.0. From the

L
infinite number of possible variations in the cCL product, we select two repre-
sentative cases:

Design I. C,=0.9and o = 8° constant along the blade.

Design II. CL varies frdm 0.6 at the tip to 1.0 at the hub.

Design I

To determine'the chord distribution for Design I, the cCL product obtained

from the optimization process is divided by the 1ift coefficient. 1In order to

compare the optimized design with the NASA-ERDA MOD-0, the chord is given for
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Figure 3.2.7 Optimum performance blade chord-1lift distribution for a two-
bladed wind turbine of a tip speed ratio of ten.
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Figure 3.2.8 Optimum performance angle of relative wind for a two-bladed
wind turbine at a tip speed ratio of ten.




R = 19.05 meters.
max

To determine the blade twist angle for Design I, we subtract the angle of

attack, 8°, from the angle of relative wind, ¢, at each station,.

:d)_.a

etwist

Design I is now specified as shown in Table 3.2.3,

Table 3.2.3 Blade Geometry for Design I

(CL = 0.9, a = 8%, 2 Blades, RTIP = 19.05 m)
0, .
Station Chord twist
(meters) (degrees)
100 0 -5.000
95 : 0.5919 -4.494
90 0.6422 -4.023
85 0.6867 -3.661
80 0.7312 -3.325
75 0.7794 : -2.978
70 0.8330 -2.613
65 0.8952 : -2.182
60 0.9665 -1.699
55 1.0506 -1.134
50 1.1500 -0.462
45 1.2698 +0.351
490 1.4161 1.357
35 1.5978 2.630
30 1.8288 4,290
25 2.1281 6.534
20 2.5210 9,710
15 3.0264 14.460
10 3.5643 21.995
5 3.4653 34,255
Design II

Design II is determined in the same way as Design I, except CL and o vary

at each station according to the following relations:

C. =C - (€ - Cp JT/R
Root Root Tip -
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( - aTiP)T/R

o= oLRoot h 0LRoot

which can be rewritten

CL =1, - 0.4 /R

a = 9.64° - 4.38 (r/R)°
Design II is now specified as shown in Table 3.2.4.

Table 3.2.4 Blade Geometry for Design II

CL =1. - 0.4 (r/R),

- o _ ° -
o = 9,64 4.38(r/R)°, 2 Blades, RTip 19.05 m

6
. Chord twist
Station (meters) (degrees)

100 0 -2.259
95 .8470 -1.972
90 .9031 ' -1.721
85 .9367 -1.578
80 : .9677 -1.461
75 1.0019 -1.333
70 1.0415 -1.178
65 1.0887 -0.976
60 1.1445 -0.712
55 1.2122 . =0.366
50 1.2939 ' 0.087
45 1.3935 0.680
40 1.5170 1.467
35 1.6721 2.520
30 1.8703 3,902
25 2.1281 5.987
20 2.4661 8.943
15 2.8974 13.474
10 3.3418 20.790
5 3.1824 32,831

Designs I and II are compared to the blade geometry of the NASA-ERDA
MOD-0 wind turbine in Figures 3.2.9 and 3.2.10. Figure 3.2.9 shows that the
optimum designs have a greater blade twist nearer the hub than the MOD-0 con-

figuration. Figure 3.2.10 shows that the MOD-0 design is a good approximation
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to optimum chord distribution for Design I, except near the hub.

'The performance of Designs I and II may be determined by the standard
strip theory analysis used in references (13, 14). The power coefficients
for off-design tip speed ratios of Designs I and II and the NASA-ERDA MOD-0
are presented in Figure 3.2.11. The NASA-ERDA MOD-0 blade design is a good
approximation to the Design I optimﬁm outer blade geometry. It is.not sur-
prising to find that the MOD-0 turbine has a power coefficient only five per-
cent below optimum Design I at the design tip speed ratio, because outer blade

geometry has the greatest -influence on performance.
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20" FUNCTION OF RADIUS
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Figure 3.2.9 Blade setting angle as a function of radius for Designs I and IT
compared to NASA's MOD-O0.
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Figure 3.2.10 Blade chord distribution for Designs I and II compared to
NASA's MOD-0 design.
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Example Case 2. Determine an optimum blade configuration for a Chalk—fype*

wind turbine at an operating tip speed ratio of 1.75. The design should have
the same design parameters as the Chalk wind turbine described in Table 3.2.5

except for the chord and blade twist distribution.

Table 3.2.5 Chalk Wind Turbine Specifications

Qutside diameter 4.6482 meters
Inside diameter 1.6002 meters
Length of blades 1.5240 meters
Number of blades v 48
Chord of blades 0.0883 meters
Blade pitch 9° outside rim [referenced
B to rotor
18° inside rim |plane
Blade twist 9°
Support wires 0.00157 meters
Number of wires not covered by blades = 96
Length of hub in axial * .6096 meters
direction

Airfoil Clark Y
C ~ ' ‘ 0.3

P

max
Procedure

To generate an optimum design, again we use the procedure of section 3.2
to obtain the blade design parameter variations for a 48 blade wind turbine at
a tip speed ratio of 1.75 as shown in Figures 3.2.12 and 3.2.13. The sectional
aerodynamics were obtained from Schmitzls. At a Reynolds number of 105,000,
it can be determined that the most suitable L/D range is between 12.5 and 13.5.
Choosing a chord dimension such that the 1lift coefficient calculated at each
blade station (using Figure 3.2.13), is in the suitable L/D range and does not

exceed the maximum 1ift coefficient, we can determine the angle of attack.

*

Invented by Thomas Chalk.
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Figure 3.2.12 Optimum angle of relative wind for Chalk-type wind turbines at
a tip speed ratio of 1.75.

Using Figure 3.2.12 to determine the angle of the relative wind at each station
and subtracting the angle of attack at each station, the blade twist angle dis-
tribution may be determined as listed in Table 3.2.6 and shown in Figure 3.2.14.
Comparing the optimum design parameters, Table 3.2.6, to the Chalk wind
turbine, Table 3.2.5, we observe that the blade chord and blade twist are in-
creased substantially from the original design. Figure 3.2.15 illustrates the
effect of the lift/drag ratio on an optimum Chalk wind turbine and on an optimum

high speed wind turbine.
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Optimum blade chord-1ift distribution for a Chalk-type wind
turbine at a tip speed ratio of 1.75.
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Figure 3.2.14 Optimum blade design for a Chalk-type wind turbine

(eCL - blade angle measured from chord line).
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Table 3.2.6 Optimum Geometry for Chalk Wind Turbine

[+ o
r/R x 100% ¢/R CL a’ ezero 1ift line echord line
100 . 0698 0.430 0 19.5 26.2
90 .0698 0.473 0.7 20.6 27.3
80 . 0698 0.509 1.3 22.2 28.9
70 . 0698 0.540 1.8 24.3 31.0
60 . 0698 0.568 2.2 26.8 33.5
50 .0698 0.589 2.6 30.0 36,7
40 . 0698 0.595 2.7 33.9 40.6
30 .0698 0.573 2.3 37.8 44.5
20 . 0698 0.494 1.1 45.0 51.7
10 . 0698 0.302 -2.0 55.4 62.1
L/D range, 12.5 + 13.5 Tip blade angle, 26.2°
Maximum radius, 2.3241 m Hub blade angle, 42.5°
Hub radius, 0.8001 m Blade twist, v 16°

Chord, 0.1621 m

POWER COEFFICIENT AS AFFECTED BY
THE LIFT/DRAG RATIO

0.6 -+
4 COPTIMUM CHALK WIND TURBINE X175, B248, C,50:475a1 i
0.5 T ‘ - /—- 0
D4 « .
c : \..OPTIMUM WIND TURBINE
P X=10.0, 822, C,=0.547 ot Ly : 0
D
0.3 -
02 <+
01 +
o] 'y 3_ - '
0 25 80 75 {e]0]
L
o

Figure 3.2.15 Power coefficient as affected by the 1lift/drag ratio for the
optimum Chalk wind turbine and an optimum two-bladed wind turbine.
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3.4 CLOSURE

Performance optimization of wind turbines does not share the rigorous
foundation that exists for the determination of optimum performance propellers.
A strip theory approach using local optimization results in higher calculated
performance than either constant axial velocity or constant wake displacement
velocity methods that have been applied to wind turbines.

Optimized wind turbines perform best at high lift/drag ratios as is to be
expected. Structural and cost considerations, as well as off-design operating
conditions may dictate some departure from the performance optimized configura-
tion. Knowledge of the optimized configuration will enable design changes to
be directed as to minimize performance loss.

Figures 3.4.1, 3.4.2, 3.4.3, and 3.4.4 summarize the maximum perform-

ance that can be obtained from horizontal axis wind turbines.

0.6} o GLAUERT IDEAL

L/D=

Figure 3.4.1 Effect of Number of Blades on Peak Performance of Optimum Wind
Turbines
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~BLAUERT IDEAL

Figure 3.4.2 Effect of L/D on Peak Performance of Optimum One-Bladed Wind
Turbines

0.6f GLAUERT IDEAL

Figure 3.4.3 Effect of L/D on Peak Performance of Optimum Two-Bladed Wind
Turbines
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oe6F GLAUERT IDEAL

_ No. of Blades =3

Figure 3.4.4  Effect of L/D on Peak Performance of Optimum Three-Bladed Wind
Turbines
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CHAPTER IV

AERODYNAMICS OF THE DARRIEUS ROTOR

INTRODUCTION

Interest in the wind as an alternative energy source has resulted in
a number of investigations of unconventional wind-powered machines. Soﬁth
and Rangil have developed a vertical axis turbine of a type earlier proposed
by Darrieusz. This device is illustrated in Figure 4.0.1. The performance
of Darrieus-type rotors has been experimentally determined by wind tunnel
tests.,

Performance models of the Darrieus Rotor have been formulated by Wilson
and Lissamans, Templin4, Jamess, Muraca6, Shankar7, Strickland8 and Holme9
The flow models published by Wilson and Lissaman, Shankar and Strickland are
identical and have been found to yield the best correlation with experimental
results, however Holme's analysis is considered to be the most rigorous to
date in that the effects of both bound and wake vorticity are included.
Since Holme's analysis is restricted to linear aerodynamics and 2-D rotors
no test data comparisons are possible. The current method of performance
analysis for 3-D machiness’7’8 is in essence a strip theory in which the time-
averaged force on a blade element is equated to the mean momentum flux through
a streamtube of fiked location and dimensions. The analysis uses quasi-steady
aerodynamics neglecting the effects of mutual interference and of more signifi-
cance, neglects the effects of the rear blades in crossing the vortex sheets
of the forward blades (front and rear blade loads are the,sgme). While the
analysis correlates well with the available test data, it may be noted that
the test data obtained to date has centered on time-averaged quantities such

as power and the force in the free stream direction.
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4.1 LINEAR THEORY

To analyze a Darrieus-type crosswind-axis device we adopt the standard
approach of wing theory, which is to express the forces on the system by a
momentum analysis of the wake as well as by an airfoil theory at the lifting
surface itself. The expression for these forces contains unknown induced
flows. By equating the wake and blade forces one obtains sufficient equations
to determine the induced flows.

For the device considered we assume that each spanwise station parallel
to the akis behaves independently in the sense that the forces on the device
at each station may be eduated to the wake forces. In general, these devices
can ekperience a windwise as well as a cross-wind force, so that the wake can
be deflected to the side.

Consistent with Vortek theory of airfoils, we will assume the induced
flows at the device are one half their value in the wake. Thus, we obtain that
if the wake windwise perturbation is AV «-ZaV_, then at the device itself the
incoming flow has velocity Vw(l-a), giving the flow system illustrated in
Figure 4.0.1.

In order to simplify the analysis we shall first adopt the following

assumptions,

1. B =20
2. CD =0
3. CL = 27 sino

4. ¢c << R
5. Straight blades (y=0)
Our results will then be limited to an inviscid analysis at high tip

speed ratios where the maximum angle of attack o is small. The low tip
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speed ratio performance requires numerical analysis to model the nonlinear
aerodynamics near stall. Using the above assumptions and starting with the

Kutta-Joukowski law, we can write

dL _ 2
Fr oWI' = 1/2pW cCL
so that
r = S wWe, = meW sin o
2 L

Since the force on the airfoil can be expressed as

Si=
v

= pr?

we obtain

|Q.4
=

2.0 . . A
= pmc [-VaVt sin”6j - (Va sin 6 + Vth sin 6 cos 6)11 (4.1.1)

[a W

Z

Now we can equate the force on the airfoil to the change in momentum in the
streamtube which the airfoil occupies. Let the streamtube be of width dx
when the airfoil goes from angular position 6 to position 6 + df. The width

dx is related to do by
dx = Rd6|sin 8

The process will repeat itself every revolution so the time interval of
our analysis shall be one period which is 2m/Q. Of this time period, the airfoil
will spend a time increment of d6/Q in the front portion of the streamtube and
another time increment of d6/Q in the rear portion of the wake. Since the
streamwise force contribution from equation (4.1.1) is seen- to be symmetrical

with respect to the angles %6 we may write the blade force equation for the time

period 2%/Q as
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T _ ... 2 dse
j - = -me:VtVa sin e-fi

blade

Now the momentum equation yields the force in the streamtube as

-
A dF . 27
i3 = de6l51n 9] (1—a)Vm2Vwa )

momentum

Equating these two forces under the assumption that Va = Vm(l—a) and

Vt = R yields an expression for the axial induction factor a for one blade
c RQy .
= iﬁ-v—431n 6

o]

or for B blades

%%%‘l;sin o

[oa)

Now that a 1is defined, the blade force may be resolved into tangential

and radial components. The torque is given by
Q = pmcR Vi (l—a)z sin2 8

The average torque for a rotor with B blades is

: 2
—_ 2 4 BeX . 3 BeX
Q = [pmBeRV,] [1/2 - 3= = + 55 = |

and the corresponding sectional power coefficient is given by

2.2.2
p
c = ower = X gc [1/2 - 4 BcX + 3 B c2X ]

P 1/2 pVi(Swept Area) 5= R 52 R

%g-is the tip speed ratio.

where X
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This expression yields a maximum power coefficient of 0.554 when the
quantity BcX/2R = & ax = 0.401. Further refinements can be made with con-
sideration of drag and stall.

Figure 4.1.1 illustrates the dimensionless mass flow, streamwise
force and power for the case of a cyliﬁdrical rotor using the analysis of
Templin4, Wilson and Lissaman3 and Holmeg. The coefficients are defined for

a unit depth of rotor.

c. = Mass Flux
m -pV_2R-1
Streamwise Force
Cr = 7
1/21rV°° 2R+1
Power
Cp = 3

1/20V> 2R-1

Templin's analysis uses a unifornm induced velocity while the analysis of Holme

considered induced velocities that varied in both the x and y directions.
From the figure it may be seen that all three theorieés approach the
same limits for zero loading. For large loadings however the so-called

5,7,8 yields better agreement with the results of

multiple streamtube method
Holme. Neither our analysis nor that of Templin's predicts unsymmetrical
loading conditions as does the analysis of Holme. Holme's results show that

the blade encounters higher angles of attack at the front statioms than at

the rearward positions.

Figure 4.1.2 shows the position of the shed vorticity for both the Templin

model and our flow model. Since the flow through the rotor is uniform in
Templin's model the vorticity sheet does not deform in the streamwise direc-
tion. In the case of non-uniform induced velocities it may be seen that the

shed vortex sheet deforms continuously in the streamwise direction.
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Figure 4.1.1 Mass Flow, Resultant Force and Power Coefficients in Non-Viscous

Flow
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OUR MODEL

TEMPLIN'S MODEL

Figure 4.1.2 Position of Shed Vorticity

At the high rotétional speeds required for the Darrieus-type rotor, the
inertial loads are large and result in substantial bending loads in the blades.
These bending loads may be removed by deploying the blade in a shape similar to
the catenary so that the ;oads are entirely tensile. The required shape has been
investigated by Blackwell10 and given the name troposkien. The curve is des-
cribed by elliptic integrals and is approximated by a sine curve or parabola.

The effect on performance caused by bringing the blades closer to the axis of
rotation is substantial since both the local rotational speed and the usable

component of the lift are reduced.
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The analysis of a curved rotor proceeds in the same manner as above. If

we analyze a unit height of the rotor, the expression for a becomes

Bc

R
m

a = X cos y|sin 6|

where Yy is the local angle between the blade tangent and the axis of rotation.

The average torque generated by a slice dz along the axis of rotation is

=

= prcVi cos ¥y [1/2 - %;-OXCOS Yy + —g-czxzcos2 v]

218

and the incremental power coefficient is

dC —~
&EE-= %Q, L 5= = 4XGX Rcos y[1/2 - %E-oXcos Y + -g-qzxzcos2 Y] (4.1.2)
® 1/20VA

where o = %%— is a solidity defined as the ratio of blade circumference to
disc diameter.

The integration of equation (4.1.2) for an arbitrary geometry may be
accomplished; one simple case is the circular blade for which a maximum power

coefficient of 0.536 occurs at oX = amax = 0.461.
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4.2 NON-LINEAR THECRY

In the previous section, the aerodynamics of the Darrieus Rotor was
examined for the case in which CL = 2wsino. This 1ift curve selection
results in a linear relation between the circulation T and the componenf of
the relative wind that is perpendicular to the blade. Since airfoils do
not exhibit 1ift coefficients that are expressible in single closed form
analytical expressions, a numerical approach must be used.

Figure 4.2.1 below shows a curved Darrieus Rotor blade and the unit
vectors to be used in describing the flow. It is to be noted that gB is a

unit vector which is parallel to the blade.

z

8 = Tcoss + Jsing
ég =-1sing + ?cos@
8, =-8.cosy - ksiny
8g = keosy - 8 siny

Figure 4.2.1 Unit Vectors Used in Describing the Flow for a Curved Darrieus
Rotor Blade



97

The velocity of the air relative to the blade is
W=1V sing-5(V_+ V_cose)
- t ItV t

Transforming the relative velocity to components in blade coordinates, we

obtain for the effective relative velocity

—)- -
we = _(Vt + Vacose)ée - Va51n9cosy§L

here the spanwise component of the flow has been omitted. Since the 1lift

developed by the blade is in the We X éB direction, it can be shown that
We -5 =W xé.-f=-V sing
L j = X & 7= - Sinécosy

where éL is a unit vector in the direction of the 1lift.
A section of blade of length ds in the éB direction develops a 1lift
force dL where

- 2 :
dL = WecCL éL

I\)_LJ)I»—-‘

the streamwise component of this force is
dl+5 = —2oW cC, V_sino
J = -5pW_cC; V singcosy

As dz = ds cosy, equating the momentum change in a streamtube of

dimensions Rd8|sin6|dz to the streamwise force generated by a rotor with B

blades, we obtain

. 2d6 . 2m
1/2pWeBcCLVtcosy51n6 —Erdz = de6]51ne|dz VaAV“ﬁ

The left-hand side of the above equation represents the blade-generated stream-
wise force while the right-hand side of the above equation is the momentum flux

in the streamtube.
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Simplification of this equation results in

: C. W
Bc R L € _ p4(1-a) (4.2.1)

€y ) = ()
Blade Momentum
The angle of attack a is given by
o> ,
W Weé V _sin6cosy
tan o = - == . .2 (4.2.2)

W el V cos6+V e

6 We 5 a t

It is to be noted that consistent with strip theory for horizontal axis rotors,
the drag force has not been included in the determination of the induced
velocities. It may be also remarked that inclusion of drag forcesbfesuits in
a singularity at the & = 0 and at 6 = m stations for Darrieus Rotors since the
streamtube width-(dx = R|sin6|d6) at these points goes to zero while the stream-
wise force does not reach zero when drag is included.

The induced velocity is detefmined by iteratioﬁ using equatioﬁs (4.2.1),
f4.2;2), and aerodynamic data for the airfoil in the form CL = CL(Q).

Once the induced velocity has been evaluated, the torque contributions from

1ift and drag may be determined. The 1ift contribution to the torque is

2
R
Cdfeer oM ov?Be e o g yiineR
dQL = dL éeR = z"'pvw v CL(l a)51neR dz
m e m
while the drag contribution is
R c. [v. v
=g __ m 2 BcWe D t a R
dQD = dD éeR = -3 pVoo Rm Voo cosy Vw + K coso Emdz

Here Rm is the maximum rotor radius.



Thus

dQropar = 49, * dQ

The average torque for a slice of rotor dz in height is given by

m

2m
aq. = 1 1
dQr = 77 f T 7 fdQ

Since dQT varies with 6 and the torque is symmetric about the x-axis.

power is given by 5&9 or

Z
max

dQT
Power = Q -— dz
dz

(o}

where it is to be hoted that R = R(z).

The

99
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4,3 COMPARISON WITH EXPERIMENT

Studies of references 11 and 12 give experimental results for Darrieus
rotors with diameters of 12 to 14 feet with one, two, or three blades. The
blades used in these studies were NACA 0012 sections having about a 6 inch
chord. The resulting Reynolds numbers for the blades were of the order of
3 . 105. References 11 and 12 were used to check the analytical formulations
of Templin, Muraca,and Wilson and Lissaman. The later analytical formulation
was found to give fhe best results when compared to the data. Figures 4.3.1
and 4.3.2 present a performance comparison between analytical and experimental

results. There still exist notable differences between theory and experiment.

TABLE 4.3.1 Aerodynamic Data Used in Calculation for

Figures 4.3.1 and 4.3.2

Maximum Lift Coefficient ‘ 0.9
Maximum Drag Coefficient 2.0

Stall Angle 9.21°

Lift Curve Slope 5.6/radian

For Angles of Attack, a less than 9.21°

Lift Coefficient 5.6ua

Drag Coefficient ©0.014 + (8.255x10‘5)a2
For Angles of Attack, a greater than 9.21°

Lift Coefficient 0.9

Drag Coefficient -0.1841 + 0.02912¢
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Figure 4.3.1 Comparison of Analytical and Measured Power Coefficients for
Darrieus Rotors
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Several observations can be made cbncerning this flow model for the Darrieus
Rotor.
1. The flow model predicts a maximum power coefficient which is less
than that of an actuator disk (0.593). A closed-form solution
for a Darrieus Rotor with circular arc blades and CD= 0 yields

C = 0.536.
P max

2. The reduced frequency (EV%§_;IJ has the same value for all test data
used. The value is about 0?04, small enough that the aerodynamics
should be quasi-steady unless static stall is approached by the blades.
Incorporation of the effects of unsteady 1lift into the analysis will
result in two effects. First, the magnitude of the 1lift developed
will be reduced. This will result in lower predicted performance.
Second, the 1ift will lag the angle of attack. The principle effect
of the phase lag is that the rotor will experience a net side force.

3. Test data and theory both show that the three-bladed Darrieus rotor
has the most desirable operating conditions, i.e. highest powef out-
put and lowest runway speed and almost constant torque.

4, Available test data covers power and overall force measurements only.
A complete wake velocity survey has not yet been made by any of the
investigators (Muraca12 made one traverse). Since any aerodynamic
theory for Darrieus requires explicit knowledge of the induced
velocity, a fundamental piece of information has yet to be obtained.

5. The airfoil pitching moment does contribute to the rotor torque and
hence to the power. For a symmetrical airfoil the pitching moment

is zero below the stall when the aerodynamic forces can be considered

quasi-steady. Above the stall symmetrical airfoils do experience
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pitching moments. Because of the symmetry of fhe flow about

the x-axis there is no net contribution of the pitching moment in
this flow model. There would be a contribution to the blade loads
however.

6. The flow model predicts a near uniform total torque for a three-

bladed rotor at high tip speed ratios. However at lower tip speed

ratios, the predicted total torque fluctuates considerably. The
torque variation is of particular importance when using synchronous
operation. Figure 4.3.3 illustrates the total tofque.as a function
of blade position. Note that at a tip speed ratio of 3, there is

no longer a near—uniform torque. When using synchronoﬁs opération,

low tip speed ratios occur at high wind speeds. The chéracter of

the stali also has a large effect on the torque variation. |
Figure 4.3.4 illustrates the torque history for one blade of

the rotor described in Figure 4.3.3. Again it may be noted that both

the tip speed ratios and the character of the stall have a large effect

on the predicted Eorque history.

7. The makimum power coefficient predicted by this flow model is
extremely sensitive to CL . The maximum lift coefficient has a
large effect on the rangemiz operating tip speed ratios. Figure 4.3.5
illustrates the dimensionless performance of a family of three-bladed

Darrieus Rotors for which the maximum 1ift coefficient varies by 0.1.
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4.4 MULTIPLE SQLUTIONS

The iterative solution of Equation (4.2.1) can result in multiple solu-
tions for the Darrieus Rotor just as is the case for horizontal axis rotors.

Recalling that equation (4.2.1) can be written in the form

€)= (C)

L BLADE L MoMENTUM

we may graphically illustrate the multiple solutions in the same manner
as given in Chapter II,

Figures 4.4.1, 4.4.2 and 4.4.3 show the effects of tip speed ratio,
blade solidity and blade position on the blade force equations. The same
characteristic 1ift curve that was used in Chapter II was used to generate

these curves.
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Figure 4.4.1 Effect of Local Tip Speed Ratio
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CHAPTER V

SAVONIUS ROTOR

INTRODUCTION

The Savonius Rotor was invented by S. J. Savonius of Finland in the
early 1920's as a power source to drive Flettner rotors on ships. Savonius
soon discovered that his S-shaped rotor developed more propulsive force
than the Flettner rotor which generated thrust due to the Magnus effect.
His first application of the rotor was to drive a small boatt Since
Savoniusl published his work in 1931 a variety of other applications have
been conceived, including exhaust fans, propelling toy ships, and generating
electricity. The later use has generated interest to investigate this type
of rotor.

The Savonius Rotor has been eiperimentally investigated by Bachlo,
Simonds and Bodekll, Mercierlz, Newman7, and others. Because of the large
side forces developed by the Savonius Rotor, wind tunnel test results must
be viewed with caution.

Wind tunnel testing of Savonius Rotors requires a much larger ratio
of tunnel area to rotor area.since the wake experiences large crosswind
forces as well as moderate windwise forces.

In this chapter, the flow field is described and an analytical
model is developed for performance analysis of this rotor. This is the

first time the analysis of the Savonius Rotor has been presented.
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5.1 DESCRIPTION OF FLOW FIELD

From the global point of view the operation of a Savonius type rotor
is like that of any other windmill device. The free stream flow (or wind)
produces an aerodynamic force on the rotor blading and this blading moves
with at least some component of the aerodynamic force in the direction of

"motion. Thus work is done on the machine and energy extracted from the
flow. This energy extraction is associated with change in total heéd of
portions of the flow, which is always kinematically realized by the gener-
ation of vorticity. This is expressed in its most basic form by Crocco's
Equation.

+
?x§=VH-Tvs+%

Here v is the local velocity vector, @ the vorticity, H the total energy
or stagnation enthalpy, T an& S the temperature and entropy,‘ This indicates
that, neglecting viscosity and heat conduction, vorticity must always be in
thé flow field when the distribution of total energy H or the entropy S is
non-uniform. It is also of interest to observe that for this condition
the vorticity, ﬁ,lcannot be parallel to the locél flow, V. This vorticity
appears.in the form of discrete vortices, of vortex sheets, and of regions
of distributed vorticity. The vorticity will extend downstream and will
manifest the kinematics defining the forces on the rotor, and the power
extracted from the flow.

For the specific case of the Savonius type rotor there is always a
significant unsteady flow component. This is in distinction to some other
types where, although wunsteady flows always occur, the effects of the

unsteadiness may be sufficiently small that a steady or quasisteady
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approach can be used for analysis. To illustrate these effects we discuss
and describe the actual flow as illustrated by motion picture records of
flow in one type of Savonius machine.

The motion pictures2 (Figure 5.1.1) show smoke streak lines of a Savonius
rotor operating at zero power coefficient at a free stream speed of about
32 ft/sec, a Reynolds number, based on free stream speed and rotor total
diameter, of about .094 million and a tip speed ratio of about 1.64. The
flow is from left to right and the rotor turns in a clockwise direction.
In analyzing these photographs it must be clearly recognized that the smoke
lines are streak lines, and as such are not parallel to the streamlines
of the flow, nor is their spacing inversely proportional to the flow
velocity as would be the case with streamlines. We will refer to the
blade on the left in frame 1 as vane 1, the other as vane 2, with the
outer edge as the tip. We will define vorticity in the same sense as the
rotation (clockwise) as positive vorticity.

The frames have been printed directly from a positive motion picture,
that is areas shown dark in the figures are in reality light, and the real
smoke was white against a dark background. The rotor end plate is indi-
cated by a dark circular ring of larger radiﬁs than the vénes, while the
rotor support shaft is the light bar extending upwards from the rotor
axis at 10 o'clock radial position.

From frame 1 through frame 22 we note that there is apparently
attached flow on both the convex_and concave faces of vane 1, while vane
2 appears to show separation on its convex face. At frame 22 we observe
the beginning of vorticity shedding from the tip of vane 1 developing

into a positive vortex near the tip of vane 1 in frame 29. It appears
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that the vortex shedding on vane 1 begins when the dividing streak line

(corresponding to the stagnation streamline in steady flow) reaches the

tip of this vane in frame 23. Vane 2 appears to show distinct separated
flow on its concave face in frames 20 through 32.

By frame 43 the vorticity shed from vane 1 has organized itself
into a "free' vortex and is proceeding downstream at a distinct downwash
angle and, taking this downwash into account at approximately the tip
radius separation of vane 1 in frame 25. It will be noted that the flow
picture has returned to that of frame 1, with vane 2 in the position of
vane 2.

The process of vortex shedding from the advancing blade (vane 2) is
not as easy to determine. In frames 2 through 7 we observe the formation
of an indistinct region of smoke on the forward portion of convex face
of vane 2. This appears approximately fixed with respect to the observer,
that is it seems to move backwards along the vane with time until itvappears‘
to join with the flow on the concave face of vane 2 at frames 19 through
21. What appears to be a negative vortex (possibly also containing low
energy separated flow) can be seen in frames 29 through 39. This vortex
is best identified by the cusp like streak line in frames 30 through 34.
This cusp appears near the edge of the rotor end plate on an imaginary
line which is the extension of the rotor support strut. This cusp can
be seen to move downwards and backwards, with its predecessor near the
bottom of the picture in frames 1 through 19.

It is of interest to mote that the motion picture appears to indicate
a non-uniform rotational speed in the vicinity of frames 4 through 7 where

the rotor speed seems to have significantly slowed down.



115

i

Fig. 5.1.1 Flow Field of Savonius Rotor. Frames 1-8.
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Fig. 5.1.1 (cont.). Flow Field of Savonius Rotor. Frames 9-16.
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Fig. 5.1.1 (cont.)

Flow Field

of Savonius Rotor.

Frames 17-24.
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Frames 25-32.

Flow Field of Savonius Rotor.

Fig. 5.1.1 (cont.)
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36

Fig. 5.1.1 (cont.)

Flow Field of Savonius Rotor.

Frames 33-40.
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42

Fig. 5.1.1 (cont.)

Flow Field of Savonius Rotor.

Frames 41-43.
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The flow system described above is very helpful in constructing a

rational flow model for analysis. The major discernible features are

reiterated below:

1

2)

3)

4)

Distinct vortices are shed from the vane tips when the vane is
approximately at right angles to the flow.

These vortices are counter rotating with the one from the retreat-
ing vane rotating in the same sense as the rotor itself.

The shed vortices move rearward at approximately free stream speed,
with a distinct downwash associated with bound vorticity of the
same sense as the vane rotation.

There appears to be attached flow on both sides of the retreating

vane.

Other features of the flow are less easy to specify definitively.

Unfortunately, the movie frame does not show far wake details and extends

only about two rotor diameters downstream. Thus the nature of the vortex

shed from the advancing vane is not recorded since due to the downwash

1

2)

3)

it occurs below the movie frame. This would be of particular interest
since it is in this vortex that any large separation regions might be
expected to occur.

Thus tentative conclusions which can be drawn are:

There appears to be a separated flow on both sides of the advancing
vane when it is approximately normal to the flow.

This separated flow is apparently shed as a bubble and contains

the vortex shed from the advancing blade.

The advancing blade vortex apparently contains a region of low
enérgy flow, which extends towards the wake centerline as the

vortex moves downstream.
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A number of questions are raised, which cannot be answered by the

existing photographs. These questions are posed as very worthwhile

research topics for future flow visualization work.

1)

2)

3)

4)

Does the character of the flow change with tip speed ratio?
Particularly, what is the flow picture at the tip speed ratio
corresponding to maximum power?

What is the nature and location of the flow separation?

If the vortices are shed approximately simultaneously from top
and botton vanes, are they unstable as they proceed downstream
as would be expected from Von Kérmén's3 analysis?

It is believed that the flow shown in the movies was for zero
power coefficient. Does this imply that the flow is non—represeﬁ—
tative of power generating states and that it contains larger
regions of low energy flow than would occur under maximum power

extraction?
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5.2 INVISCID ANALYTICAL MODEL

5.2.1 Discussion of Analytical Model

It is evident that the flow field which must be analyzed is certainly
unsteady and cyclic, and probably also separated in certain tip speed ratio
ranges. We will treat this with a potential analysis, which will thus
ignore any separation effects.

Even the potential analysis involves serious theoretical difficulties
which relate to assumptions concerning the flow near the rotor tip, and
the induced flow of fhe shed vorticity. We will first discuss the tip
flow.

For simplicity in the model we have considered a two vaned rotor
with no center gap, that is it is an S shaped airfoil of zero thickness,
with camber antisymmetic about the half chord, and rotating about the
half chord. We will call the extremities (the outer edges) the tips, and
note that there are no grounds for them to be either leading or trailing
edges. There is no apriori reason to assume a Kutta condition (no flow
around the trailing edge) occurs, and thus no method of establishing a
circulation.

If we assume that all details of the external flow (that is the
induced wash and any wake vorticity) are knoWn, then the kinematic boundary
conditions are uniquely defined and in principle we can determine an exact
potential flow solution for the rotating vane. However, there is a
circulatory potential solution which also matches all kinematic boundary
conditions on the rotor, which can be added like é homogeneous solution
to any selected solution. This homogeneous solution can really only be

determined by boundary conditions at infinity, where it produces a pertur-
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bation similar to that of a point vortex, thus it dictates the circula-
tion about the rotor. Thus the unsteady solution can be determined subject
to a circulatory solution of arbitrary magnitude.

In classical airfoil theory, this ambiguity is resolved by a local
condition, namely the application of the Kutta condition to flow at what
is arbitrarily defined as the trailing edge of the ajrfoil. Under normal
conditions of steady flow, rounded leading edge, sharp trailing edge and
representative viscosity,.the application of the Kutta condition to the
trailing edge gives excellent correlation with experiment.

In the case of the Savonius rotor conditions are quite different.
First we note that with unsteady flows it is possible to have a noncircu-
latory potential flow with flow around sharp edges - however this flow
exists for a very short time and is followed by vortex shedding
from these sharp edges aithough the flow remains potential with hQ separ-
ation of the type associated with a low energy wake. It is not clear how
long the non-circulatory flow exists, but theoretical calculations (Hunt4)
suggest that, for sharp edges, vortex shedding commences immediately.

Now, it is possible to add a circulatory component to the solution wﬁich
will eliminate flow around one or the other tip, but a Kutta condition on
each tip cannot be achieved unless there is a special distribution of vor-
ticity in the wake. However, it is always possible to satisfy the Kutta
condition at a tip if vorticity is shed into the stream.

This technique was used by Karman and Sears3 in their classic paper on
unsteady airfoil theory. In their case, a single trailing edge was defined
by the airfoil geometry, and this edge was considered a source of vor-

ticity flux into the stream. Now, subject to various vorticity comser-
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vation and convection laws, and the assumption that there is never
flow around the trailing edge (Kutta) it becomes possible to uniquely
define the unsteady circulation. It would be possible to apply the
Karman-Sears methodology to our problem with the basic assumption that
Kutta condition must be satisfied at both tips of the rotor, and that
vorticity is shed from these tips to maintin this flow. This approach
is much more complicated than can be treated here. The approximation used
here is consistent with the approximation for wake vorticity and we will
describe it after discussing the wake vorticity or induced flow models.

- It is well known for propeller-type rotors that the drag on the disc
is represented by a reduction in wind speed through the rotor, known as
axial interference, or drag induced flow.

For propeller rotors and for crosswind axis machines of the Darrieus
‘type, this can be represented as a uniform steady flow, at least in an
annulus, or in a "slice'" for the crosswind axis machine. The implication
here is that the rotor develops a wake of dimensions comparable to the
swept frontal area, and that this wake is steady and bounded by a vortex
sheet shed from the rotor. Conditions necessary for this to‘be a good
assumption are that product of the number of blades and the tip speed
ratio should be large.

For the two-vaned Savonius rotor neither of these conditions are
satisfied so that the wake cannot strictly be represented by a pair of
vortex sheets of uniform strength and separation. In fact, the vortex
shedding is cyclic and the positions from which vorticity is shed vary
so that the wake varies both in width and vorticity. We note that this

is one degree more complicated than the Karman-Sears analysis, where the
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wake varies in strength but not in lateral (crosswind) position. In the
actual case of the Savonius, the wake is apparently of approximately
sinusoidally varying width, with vortex sheet strength also approximately
sinusoidal with maximum strength at greatest wake width. Recognizing the
complexity of computing the spatially varying induced field due to such

a system and the further complication of consistently matching this
vorticity to the vane shedding and the inducéd flows to the kinematic
vane boundary conditions we assume as a first approximation that the

wake can be treated like a vortex tube of constant strength and rectang-
ular cross section.

On this basis the induced flow will be uniform across the vane, and
the vane will respond as though it were in a stream of reduced velocity
Vm(l—a) where V_ is the free stream velocity and a the windwise induction
ratio. This stream will also be deflected in a crosswind direction
associated with the crosswind or 1lift force on the vane.

Subject to this assumption, we now note that it will be impossible
to meet Kutta conditions at both of the vane tips since only a single
circulation variable is available. On this basis, the most rational
choice of circulation is.that which simultaneously minimizes the flow
around both tips.

Thus, for the analysis of the following section we have initially
used the most simple rational model. This model is sufficient to repro-

duce the main observed characteristics of the Savonius rotors.
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5.2.2 Description of Potential Functions

Before embarking on the mathematical analysis it is useful to describe
the nature of the three potential functions employed in the theoretical
solution. If we consider a vane in the éosition shown, Figure 5.2.1, we
note the three velocity components which specify the kinematic boundary
conditions. Potential functions satisfying each of these can be defined
and we describe them as ¢n, that due to flow normal to the vane Vm(l—a)
sin ¢, ¢c that due to flow across the vane V_(1-a) cos 6 and ¢Q that due
to the rotation induced velocity, Qr.

We show the character of the potential and distributed vane vorticity
in order to illustrate the contribution of each component.

The potential is shown in Figure 5.2.2, the distributed vorticity in
Figure 5.2.3. We note that the local pressure force is related to the time

derivative of ¢, ¢, and to the spatial derivative ¢T, which is directly

t
proportional to the local vortictiy.

First we note that the ¢n, ¢C vorticity components will generally
produce flow around the tips. However the arrangement shown actually
minimizes the net total tip flow since any additional circulatory compo-
nent will reduce flow around one tip but increase it at the other.

We note that ¢n, ¢C produce torque moments, but no net 1lift, while
¢C produces a lift without any moment. It is noted that ¢Q does automat-
ically satisfy a Kutta condition at each tip, also that there always exists
an angle of the vane at which the tip Kutta condition is satisfied. This

angle corresponds to the ideal angle when the rotor is treated as a cambered

airfoil, and is independent of the angular velocity.
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Figure 5.2.1 Components of Flow Defining Kinematic Boundary Conditioms
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It is also noted that there is a circulation developed on the rotor,
which is independent of rotor angle and vane camber and is related linearly
to the angular velocity ©. Thus, in this model the circulation remains
constant throughout the cycle. However, this does not imply that the 1lift
is constant through the cycle since unsteady terms contribute to the
total 1ift, causing it to be different from that implied by the vane

circulation alone.

5.2.3 Potential Analysis for Two-Dimensional, Uniform Wake Model

Consider the geometry of Figure 5.2.4. .We have a twb—vaned rotor of radius
R and angularAvelocity*Q in a stream of uniform veldcity v =V _(1-a).
The rotor has antisymmetric camber defined by C = BRf(r) whére r is the
radiﬁs position normalized by the outer radius R. The non-dimensional term
8 now plays the same role as blade angle of attack. Then, assuming we have
a perturbation potential given by V*R¢ (r,t,8) we see by linearized theory
that the normal derivative of this potential is given by
V*¢n = V*¥sin 6 + V* cos6 B £' - QRr
We now write ¢ as
o= ¢  sin & + B ¢ oS - X*¢"
where X* is the local tip speed ratio Qr/V*E.

where each potential is identified through its inner boundary condition,

(B.C.), as follows

¢n is the normal potential with B.C. ¢2 =1
¢C is the camber potential with B.C. ¢; =-f!
¢Q is the rotational potential with B.C. ¢Q =T
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V*= V, (1-q)

Figure 5.2.4 Geometry of Two-Vaned Rotor
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We now note that in an unsteady coordinate system rotating with the vane

we can write the net pressure coefficient on the vane

*
-Ap/1/2 oV 2 as

(@]
1l

4+ 4 (¢r cosf + X*¢6)

(@]
i

From this we can calculate loads on the rotor.
TORQUE
The local torque on an element is given by
*
q=1/2 oV R? c; r dr
While the mean torque Q of both values is given by

1 27

2.2
_pV*R * .
Q =5, a;é ﬁga CP r d6 dr
(o) )
Defining the torque coefficient as
*
ch = o/ V<R
Q
we get
1

We can identify ¢C in a simple fashion, according to steady aero-

dynamics. If we consider the case of X* =0, 8 =0
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Where Cm is the pitching moment of the airfoil at zero 1ift about the
mid chord. Since it is at zero 1ift, it can also be identifed as

Cm , the pitching moment about the quarter chord. Thus we obtain
O N

the interesting result

C* = C C
Q m m
and
1
c
Cm = 28 .’. ¢r T dr
(]
DRAG

The local drag is given by
2, .F .
D =1/2 pV*°R CP dr sin 9

while the mean drag D of both vanes is given by

2 1 2m
D = pV* R C* sin® de dr
2m p
0

Definiﬁg the drag coefficient CB = D/pV*zR we get
1

Y ©a
CD = 28 X T ¢r r

* (0]

X C
m

LIFT

Similary, the 1ift is given by
1

*— * Q n
C, =2X f(¢r+¢)dr

o]

We now note from the boundary conditions that ¢¥ = ¢n

Thus
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5.2.4 Comparison with Basic Power Extraction Theory and Global Results

1f we now assume a two-dimensional rotor, so that there is mno wake

deflection

KA

% *
CD = 4a/(l-a) = X Cm

Now we can write the power coefficient based on ijRZ and the conven-

tional tip speed ratio X = QR/V, as

2
. X CQ(l—a)

(@]
0

C =X Cm(l—a)z but X = X/(l-a)

p

]

But XCm = 4a from first equation above
Thus C_ = 4a(l—a)2 recovering the well known result for power coefficient

under conditions of uniform induced wake flow. We note that we can write

C_ as
P

XCm 2
Cp =X Cm(l —-jrﬂ

Next considering the lifting term, CL, we note that the only potential

with circulatory component is ¢Q and that the circulation, I, is constant

given by
1
* *Q
' =4V R ag.x ¢ dr
T
0
1
* Q
I' = 4V RX ¢ dr
T
ol
I =

* *
4V RX j o™ dr

o]
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*
But applying the Joukowsky theorem L = pV I' we get

1

which is an explicit representation of the well known Magnus effect and

recovers the result from direct integration.

Now noting that ¢n = /&—rz we get

* *
so that CL/CD = W/Cm.

*®
Thus we determine the circulation I' to be given by T' = V RCL.

If we express this in terms of the tip speed Vt’ we obtain
r = VtﬂR

This result is intefesting since for a rotating circular cylinder,
assuming the no slip condition we would get T = 2 VtwR. This may be
expected to be the result obtained for an infinite number of vanes.
Thus, based on this assumption we note that fhe two-vaned rotor develops
half the circulation associated with an infinite number of vanes.

It is also of interest to observe that although the circulation is
constant. throughout the cycle, the lift is not, varying from a maximum
at 6 = 0 to zero at 6 = m/2 such that the mean 1lift per cycle is given

o
by pV T.

It is shown in the next section that for typicalvantisymmetric

camber shapes the pitching moment is given approximately by wR. Thus
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for 8§ = 1/2, corresponding approximately to semicircular arc vanes we get
the 1ift to drag ratio given by

* *®

CL/CD = 1/B = 2.
This indicates that the crosswind force on the Savonius rotor is larger
than the windwise force.

5.2.5 Pitching Moment of Vane

For the vane shape it is a .simple matter to compute the pitching
moment if linear theory is used. It is certainly true that the magnitude
of camber of the vane is such that slopes are not small enough to justify,
a priori, the accuracy of linearized theory. However it is a matter of
interest that iinearized theory gives excellent accuracy for thin airfoils
of large camber. ?or example, the lift coefficient at zero angle of attack
for a parabolic arc is given by linear theory as 4mg, where B is the dimen-
sionless camber (ratio of maximum camber height to chord), while for.a
semi-circular arc airfoil exact nonlinear theory gives the result 4uB.

Glauert5 gives the required pitching moment, Cm, as U

Cm = 2y - ﬂeo/2
1
where u = - Zillgfl- dx
vx(1-x)
°

e = Y dx
° m(l-x) Yx(1-x)

0
with y the camber height and x the chordwise position, both normalized on
unit chord.

For a typical antisymmetric reflexed camber line given by the cubic

y = 86v3 x (1-x) (1-2x%)
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We can exactly compute the pitching moment to be

(@]
1l

78 9v 3 / 16

0.975 =B,

For a camber line consisting of two joined semicircular arcs u
can be exactly computed, but £ becomes logarithmically unbounded because
of the infinite camberline slope at the trailing edge (x=1), as might
have been expected from the small slope limitations of linear theory.
This can be arbitrarily regularized by applying the procedure recommended
in Glauert, which is to approximate the last 5% of the camberline by a
straight line of finite slope having the same ordinate at 95% chord as the
original camber line.

On this basis, for a camber line of a pair of semi-circular arcs,

the moment is given by

Cm = (0,858 wB.

We note that this is slightly less than the cubic camber line, which
is to be expected, since the maximum camber of the cubic occurs further
out towards the tip than that of the circular arc camber.

Since the constant in the moment equation is approximately unity,

it is convenient to introduce an effective camber, Be’ defined by
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This effective camber is now independent of the vane camber line
details, but is approximately equal to the physical camber, for example,
for a semicircular arc of physical camber B we find

B =10.858 B
e

5.2.6 Effect of Non-Uniform Induced Flow

The analysis so far has considered an induced flow which is uniform
in the direction across the wind. This could be produced only by a wake
containing no interior vorticity, that is having a vortex sheet only on its
boundaries. This would imply that vorticity was shed from the vane only
when it was at thé 6 = n/2 position, that is at right angles to the wind.
Now the main source of wake vorticity is the rate of changé of vorticity
induced by vane camber,vthis vane camber term varies like cos 6, so that
itsvtemporal gradient is like sin 6, indicating that vorticity is shed
throughouf the wake. However, we are not entitled to make the many-bladed,
high-tip-speed-ratio (NX - «) assumption used in Darrieus rotor theory,
thus we must assume that the wake width varies in some approximately sinu-
soidal fashion. The wake vorticity and induced flow is shown in Figure
5.2.5. It will be seen that the axial induction, which relates to the
drag, varies in a consistent way such that induction and drag are maximum
at 6 = w/2,

It is thus clear that wake induction varies in both the wind-wise
and cross-wind direction. It is believed that this effect is too compli—
cated to take into account here, especially when other approximations

inherent to the analysis are considered.



139

As a first-order approximation, which may be somewhat more realistic
than the uniform wake assumed in the previous section we will assume that
the wake varies in the cross wind direction (the sheared wake model) so

that the local velocity at the rotor has the form
vV (1-a sin?9)

We will still assume that the wake is uniform in the wind-wise direction.

Subject to this assumption, it 1s now necessary to equate the loads
evaluated in the wake to the local vane loads. The wake loads can be
estimated by standard momentum analysis, and this is done in the next
section. 'The local vane load computation would be an extremely compli-
cated procedure since the rotor is immersed in a highly non-uniform flow.

As an approximation, we will make the assumption that the major
contribution to the mean 1ift load occurs when the vane is in the hori-
zontal position so that we use the results for the vane in a uniform
stream with velocity V_(1-a). For the drag force we assume that the major
contribution occurs when the vane is approximately at right angles to the
flow, and thus assume that we can define an equivalent uniform wake velocity
of magnitude related to some mean position of the vane.

Under this sheared-wake assumption the onset velocity at any station

on the vane is given by

(1_aj/1—r2c0526 WA

<
I

il

vV _(1-a)S

where S is the sheared-flow factor and is given by
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S =(1- a//l - r2cos28 )/ (1-a)

On this basis we obtain for the drag coefficient at the vane, CD’

= - 2
CD X Cm(l a)s

i YANE

2 VANES

AXIAL INDUCTION, 2 VANES

4 VANES

Figure 5.2.5 Wake Vorticity Geometry for Different Vane Numbers
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The selection of S§ is certainly arbitrary but for our calculations
we have simply used r2 = 1/4, 8 = 67.5°.

Thus, for the local forces as computed in section 5.2.3, we obtain

(@]
It

Xm(l-a)

(@]
il

- 2
X Cm(l a)S
where S is the shear factor.
These local forces may then be used in the full three-dimensional

force balance.

5.2.7 Three Dimensional Effects

Because the rotor experiences a cross-wind force which is of comparable
magnitude to the drag force there will be a significant defelection of the
wake in the cross-wind direction. This implies that the outer flow, which
did not pass through the rotor will also be affected, and these considerations
must be taken into account in determining the induced fields at the rotor.

Consistent with linear theory, we will assume that both the wind-wise
velocity perturbation, a, and the cross-wind deflection angle, a, will
develop to twice the value at the rotor when they are in the far down-
stream wake (the Trefftz Plane). This is shown in Figure 5.2.6. We use
this assumption to determine the forces on the rotor, then equate to the
forces determined directly on the rotor to obtain equations for ¢ and a in
terms of rotor geometry.

Forces in Trefftz Plane

As in the method used in V/STOL aerodynamics with powered wakes we
must consider both the rotor flow from which energy has been removed, and

the outer isoenergetic flow.
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where

which

Rotor Flow

The force in the direction of the distant wind, FX can be written

R
F =b ~g‘ Vm[l—a(y)]ZVma(y)dy

X
-R
integration is performed across the rotor disc, of extent 2R.

For uniform flow this becomes in coefficient form with CX = Fx/Vin
CX = 4a(l-a)

For sheared flow of the form a(y) = a cos 6 with y = R sin 6 we get

8
CX = qa(l - g;-a)

will be seen to be a very similar expression.

The crosswind force, Fy, can be written in coefficient form as

1
C, = 2a f [1-a(y)][1-2a(y)]dy/R.
-1

For uniform flow we get
Cy = 4o (1-a) (1-23a)

While for the sheared flow we get

3 4
C, =4l -S-a~ g-az)

7
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Quter Flow

Here we consider the outer flow defelected by the cross-wind wash of
the rotor flow. We can show that this flow corresponds exactly to the added
mass of a rectangle of sides 2R, b. For cross flow normal to the span,
b, this added mass is given by Arb? where A depends upon the aspect ratio,
A, of the rectangle, given by A = b/2R.

The added mass constant A can be determined by standard conformal
mapping procedure. For our purposes, we need an operational formula. By

curve fitting the exact results given by Wendel6 we can show that

A =1+ 0.5/ VA 1 <A <10

with less than 1% error.

Then for the outer flow we get the second order expression
C,” = 2a2amA/2
While for the cross wind force we get
)

C = 20 ATA/2
Y

Rotor Forces

Recalling that the rotor forces were determined with respect to the

local flow, which is inclined at an angle a we get

@]
[t}

CD(l + aCL/CD)

Cy = CD(CL/CD - a)
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Equating Trefftz and Rotor Forces

Observing that because we are maintaining first order linear theory

the drag term of the outer flow is negligble we obtain

(1 +aC/CyICy = Cy

C./C. -a)C.=C +¢C°
(Cuffp - @)y = Gy * &y

It will be noted that the above pair of equations can be used to

express a variety of cases, for example letting A - « recovers the result

XﬂBeS = CX
While reversing the sign of XB eiéher by rotating in the opposite
direction, or reversing the camber gives a propulsive device adding
power to the airstream. It may be noted too that letting X = O recovers
the correct tip-plated multiplane-lifting solution. |

Ther, writing Cm = Bﬂe where Bé is the effective camber; CL = Xm(l-a)
and CD = A Cm(l—a)Sz, we can simplify these equations. The cross-flow
angle can be eliminated from the pair to give a quadratic in X, with L*,
D* defined as force coefficients determined in the Trefftz Plane.

The quadratic becomes:

X2n2 (1 + egsz) + Xn8 _S(L*-D*) - L*D* = 0

where

oL*

i)

o
(Cy * G )/ (1-a)

D*

C/(1-a)
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For given vane camber, R, aspect ratio A, and induced flow profile
a = a(y) the above can be solved for X, then the inviscid power coefficient

determined.

5.2.8 Results of Inviscid Calculation

The eduations.presented in the previous sections make it possible to
compute torque or power coefficieﬁts:for an arbitrary range of camber
pitching moment and aspect ratio. If it is assumed that there is no
central slot or gap, that is that the vanes are joined at the rotor axis,
then these are the only variables. It is noted that there is an infinite
range of cambér line shapes, but éccording to this theory they can be
collapsed if Cm, the vane pitching moment, is considered as the variable.

It will be observed that this is very similar to monoplane wing theory,
with theradvance ratio, X, corresponding to wing angle of attack,/and
camber or pitching moment and aspect ratio playing similar roles in the
rotor as they do in the wing. As in wing theory, the details of the
camber line are only important if viscous effects relating to separation
are significant.

Since most Savonius rotors have‘circular arc vane shapes, the inviscid
performance curves are plotted for this type of camber line. The figures
illustrate the effect of aspect ratio and magnitude of camber as well as
the differences due to assuming uniform or sheared wakes.

Performance curves are shown in Figures 5.2.7 through 5.2.1Q. It will
be noted thét the aspect ratio effects are quite large and are still present

even at aspect ratios of 10.
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To illustrate the significance of the wake model, Figure 5.2.11 shows
the different performances fbr a representative rotor of semicircular camber
and aspect ratio 5.0 for the uniform or sheared wake assumption. It is
evident that the wake model has a major effect on predicted inviscid per-

formance.

06 T
05 +

0.4 +

_ Power o3 4
P rvéPﬂvs

o4 T

. R

Figure 5.2.7 Inviscid Power Coefficient for Uniform Wake Model with Semicircular
Vane (B = 0.5)
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Figure 5.2.8 Inviscid Power Coefficient for Uniform Wake Model with Low Camber
Vane (8 = 0.25)
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0.5 +
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CP : A={00
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0 0.2 0.6 1.0 1.4
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Figure 5.2.9 Inviscid Power Coefficient for Sheared Wake Model with Semi-
circular Vane (B = 0.5)
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0.4 + A=100
0.3 +
CP A=lQ
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0.1 +
Ax

0 1.0 2.0
X

Figure 5.2.10 Inviscid Power Coefficient for Sheared Wake Model with Low Camber
Vane (B = 0.25)
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Figure 5.2.11 Comparison of Uniform and Sheared Wake Models for Typical Rotor
(B=0.5, A=05)
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5.3 VISCOUS EFFECTS ON POWER COEFFICIENT

- 5.3.1 General

It is to be expected that viscosity will cause the power coefficient
to be lower than that computed by potential methods. For propeller type
rotors and Darrieus rotors these effects can be treated quite adequately
by methods already used in wing and airfoil analysis; that is, it is assumed
that viscosity develops profile drag, that is a force roughly parallel
to the airfoil chord. This force then can be introduced into the torque
equation where it normally appears as a term resisting rotation and hence
reducing the torque produced in ideal flow. It is of interest to note that
for the Savonius rotor, any direct-skin-shear stress due to viscosity will
not produce a significant effect on the torque because of the geometry of
the rotor.

However, it is probable that the viscous effects are indeed large.
We have no direct estimation of this, because there are no results compar-
ing test data with the potential flow solution. Wind tunnel corrections
due both to wake blockage and to wake deflection can be large, and as
pointed out by Newman7 some previously published test data may require
adjustment for tunnel. corrections. However, Newmans reports shows two
factors indicating the importance of viscous effects. The first is that
the maximum Cp is about 0.18 when theoretical considerations suggest one
might achieve at least about 0.30, the second is the quite distinct deter-
ioration of rotor performance for reduction in free-speed Reynolds number,
Here, Newman shows a degradation of Cp from about 0.30 to 0.28 for Reynolds
number changes from 1.9 a lO5 to 1.0 x 105. Note this is tunnel Cp’ which

must be reduced by about 30% for wall effects.
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We have pointed out that to obtain viscous power losses of this magni-
tude, one cannot expect skin shear terms to do it. Thus we must search for
a mechanism by which the viscous effects can create pressure perturbations
on the vanes. One obvious mechanism is separation from the advancing vane,
changing the unsteady potential pressures. A further mechanism is viscous
pumping by which the angular velocity causes the boundary layers on the
vane to flow radially outwards towards the tips. Presumably the modified
" boundary layer displacement thickness due to this will change the vane
effective camber, so that the pressure fields on the vane will differ from
those computed in the inviscid case. Thus this does constitute a mechanism
by which viscous effects can produce pressure pertubations on the blades
without separation occurring.

A further viscous effect which will reduce output power of the rotor occurs
at the tip plates. Frequently these are circular discs of radius somewhat larger
than the rotor radius. This is the only place where viscous shear produces direct
power loss torque and, although the mechanism can easily be visualized, there is
no valid theory for the torque on a rotating plate in a uniform flow.

Some estimates of the magnitude of these viscous power losses in attached
flow has been made and is described in the next paragraphs. It will be seen
that the losses do not appear to be of sufficient magnitude to account for the

actual loss which is believed to occur.

5.3.2 Estimate of Viscous Losses in Attached Flow
Tip Plates

The torque on a circular disc of radius R*, rotating at an angular velocity
*
of Q can be defined in terms of the mean torque moment CM where
* 2p#5
CM = 2M/(1/2 pQ~R*7)
with M being the torque for a disc wetted on both sides.



*
The torque coefficient Cm has been given (Schlichtings) in terms of

rotational Reynolds number, RQy (= R* Q/v) as

* -
5.87 (R ) 1/2 R < 5x 107

(]
1

1/5 RQ > 5 X lO5

0.146 (R.)

* - - 4 5
The value of Cm in the intermediate transition range 5x10 <RQ<5xlO
depends upon plate roughness.
For two fully wetted side plates we obtain the viscous power loss,

Cp , in standard coefficient form as
v

whére A is the rotor aspect ratio 2R/h and r the ratio of tip plate size, R',
to rotor radius R, that is r = R'/R. For an estimate of the magnitude of
this effect we consider the tests reported by Newman7.

Here we take a rotor of‘aspect ratio. 1.50 with r = 1.0. At X = 1,
we get RQ = 1.20 x 105 giving C ~ .010. Since the maximum measured
corrected power coefficient is ofvorder 0.20 at X = 0.90 these viscous
terms are not large enough to grossly affect the character of the inviscid
calculations. We note that the formula for disc torque used here is strictly
for a disc rotating in still air, and thus could not be a good approximation
for tip speeds significantly greater than zero, still the power loss due

to the tip plates appears to be about an order of magnitude less than that

actually occurring.
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Viscous Induced Torque Losses on Vane

Evidently we cannot at this stage compute the boundary layer on the
vanes themselves. However, a crude estimate can be made using the
assumption that the vane camber is reduced proportionately to the boundary
layer displacement thickness. If we assume that there is some effective
boundary layer displacement thickness, &*, on the vane, which is directly

functionally related to the drag of the vane when regarded as an airfoil then
*/R =
§*/R k CD

where k is expected to be of order one, and CD is the profile drag coefficient
at the appropriate Reynolds number. Then, assuming the CM, the vane pitching
moment is a function of effective camber, we estimate that the ratio of viscous

power loss due to vane boundary layers to inviscid power must be

2
C =k C.X (1-a

CPV/CP =k CD/CM

To roughly estimate CD we simply use data given by Schmit28 for flat
and cambered plates at low Reynolds number. Schmitz gives CD values between
0.01 and 0.04 at Reynolds number of about 0.75 x 105. Noting that CM is

about 0.5 for semicircular vanes, we note that this correction appears to

be at most 1/10 of the inviscid power.
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5.3.3 Heuristic Approach to Viscous Correction

As explained, the various attached flow viscous corrections do not
appear to be of sufficiently large magnitude. However, we have one set
of test data (Newman7) in which the measured performance (Cp versus X)
of a rotor is plotted for three different Reynolds numbers. In principal
this provides sufficient information to infer the viscous correction, if
we postulate some general functional dependence. To a certain extent, this
dependence can be estimated by examination of the differences in power
coefficient for varying Reynolds number while holding tip speed ratio
fixed. Extracting this data gives rise to a pair of curves (uncorrected
for wind tunnel constraint) giving the difference in correction at dif-
ferent Reynolds numbers as a function of tip speed ratio. If the viscous

power (uncorrected) is assumed to be of the form

C = (a+bxMr®
va

where R is the Reynolds number based on free stream speed and vane
diameter (2VR/v) we propose a viscous power term of the form

¢ =7.500 + X2 RSB

Pyt
where constraints and exponents have been deliberately rounded off to
express the approximate nature of the computation.
The quality of this fit is shown in Figure 5.3.1. Here we have plotted
the difference in power coefficient ACPO from that occurring at R ='100,000

from the power coefficients at R = 160,000 and R = 190,000. It will be
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seen that this is a reasonable fit for tip speed ratios in excess of 0.6.
For tip speed ratios lower than this it is expected that the flow separa-
tion is of a different nature.

We must now adjust this result for the tunnel constraint. Because
of the very approximate nature of this approach we will not attempt to
compute a tunnel correction varying with tip speed ratio but simply use
the maximum correction employed in the reference paper, here in Figure
-5.2.8 of Newman7 a correction on measured wind tunnel powér coefficient
of 0.651 is shown. Thus we modify the uncorrected viscous power term

to propose a corrected viscous power loss.

c, = 4.9+ x3/2y g1/3
v

We note that this will give much larger values of the viscous power
coefficient than the previous estimates, for examplé, for the rotor tested
by Newman at diameter and free stream based Reynolds number of 1.9 x 105
we get viscous term, C_ , of about 0.17. This term is much larger than
those computed previousgy.

This correction is of interest since it was derived without reference
to the basic uncorrécted result; thus if the viscous correction could be
considered accurate, it would serve as a means of checking the inviscid
potential theory. However, it is noted that at this point in the state

of the art, neither the viscous correction nor the inviscid model can be

considered sufficiently reliable to serve as a check for the other.
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5.4 CORRELATION WITH EXPERIMENT

Although there is a reasonable amount of test data on Savonius rotors
(Savoniusl, Bachlo, Simonds and Bodekll, Mercierlz, and Newman7, it is not
easy to use these results for comparison with the present theory. The
reason is principally that the free tests in the natural wind involve
necessarily poorly controlled measurements, while the wind tunnel data
normally involves a very large and uncertain wind tunnel correction to
convert to free air data. The nature of this correction relates to two
effects; the change in incoming flow speed, and circulation changes due
to wall constraints,

The Wall Constraints

The first effect occurs with both wind axis (propeller) and cross-
Wind axis machines and is accounted for by blockage (solid and wake) correc-
tions. Due to this blockage and the wall confinement, the flow speed at
the rotor is higher than it would be in a free flow. The rotor thus
generates forces and powers associated with higher free wind speeds than
the nominal tunnel speed measured by instruments upstream of the working
section. If power coefficients are computed on the nominal tunnel speed
they must then be reduced to account for wall comstraint. This correc-
tion can be appreciable since it is related to the cube of the speed, and
the speed itself may require a 10% correction.

The second effect occurs with cross-wind axis machines only.r Here
the device develops a cross-wind force, causing a cross-wind deflection
of the incoming stream. As has been shown in the section on Aspect Ratio
Effects the general effect of this deflection is to reduce the power output
of the device. The effects of wall constraints are to reduce the wake
deflectioné, so that the device tested appears to be of higher aspect

ratio than implied by its physical dimensions;
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A theory for tunnel corrections where there is no cross-wind force
has been given by Durandlz. No theory for the correction with cross-wind
force exists, but such analysis could bebdeveloped using the finite
span analysis given here coupled with appropriate imaging.

We note the significant result, that both the wind speed and deflec-
tion correctioﬁ will reduce the measured wind tunnel power coefficients,
or alternatively, the tunnel tests will always apparently give higher
powers than those occurring in free flow. The magnitude and nature of
this correction is discussed by Newman, and a tunnel constraint correc-
tion is applied to Newmans data, however, it is not clear whether the
important lift induced correction has been applied, or if only the solid
and wake blockage correction terms are used. It should also be noted that
the test data of the different references is in general for different tunnel
blockages, Reynolds number and Aspect Ratios as well as for different
vane shapes. Thus it is not possible to examine thé existing results for
mutual consistency, except to note that the experiments agree to within
about 30% for power, lift and drag coefficients.

In order to attempt to compare the existing theory it was decided
that the case most directly similar to the model developed in the present
paper was Rotor I of Newman7. This rotor has vanes of semicircular cross
section, with no gap, and is thus similar to the theoretical model used
to determine the vane pitching moment. The heuristic viscous power correc-
tion derived in Section 5.3 is applied to the inviscid results for both the
uniform and sheared wake models.

Now, it is noted that alfhough the viscous power correction was in
fact derived from Newmén we are not using a self-justifying model in
comparing with Newman's'results, since as pointed out in Section 5.3 there
is sufficient data in Newman to permit one to estimate the viscous power

correction without making assumptions about the inviscid power.
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Thus the total power coefficient for a semicircular rotor (8 = 0.50)
of aspect ratio 1.25 and Reynolds number 190,000 was computed for the
uniform and sheared wake models. This is shown in Figure 5.4.1 when it
is compared with the test results of Newman. These results are presented
uncorrected for tunnel wall constraints in Newman and no correction is
given for Rotor I. Thus we have assumed the correction for Rotor I is
the same as that for Rotor IV, since for this case tunnel and corrected
data are given in Newman. The corrected test curve is shown in Figure
5.4.1 but it must be recalled that the accuracy of this correction is
very much in question.

We reiterate that there are fundamentally two uncertainties in this
correction. The first is that the correction given by Newman for Rotor
IV has been used for Rotor I, although there are significant differences
between the rotors. The second, as mentioned by Newman, is that even the
correction for Rotor IV is open to question. For this reason we have
shown an estimated correction band in Figure 5.4.1.

It will be seen by examination of Figure 5.4.1 that the present
theory appears to approximately represent the main features of the perfor-
mance but that there are significant discrepancies, both in the magnitude
of the peak power coefficient and the tip speed ratio at which it occurs.
The uncertainties in the tunnel corrections creates difficulty in making
any statements about the peak power coefficient. However, the tip speed
ratio for peak power is not as strongly affected by the tunnel correction,
and Figure 5.4.1 suggests that the theory proposed here requires modifi-
cation to increase the tip speed ratio at peak power.

Although it is recognized that the inaccuracies described imply that
the corrected test results for Rotor I do not constitute a very critical
test of our analysis, we now discuss some ad hoc adjustments to the theory

which will bring the curves into better correspondence. First we note



160

(Figure 5.4.2), assuming the viscous power correction is approximately correct
in magnitude, that changes in Reyﬁolds number of the magnitude associated
with the tests, will not have a very large effect.

Then observing (Figure 5.4.1) that the uniform wake model appears nearer
to the test data than the sheared model we confine our attention to correcting
the former by changing vane camber and aspect ratio.

As expected, the magnitude of vane camber has a large effect on the
peak power coefficient, but causes little change to the tip speed ratio
at which this occurs, as illustrated in Figure 5.4.3. On the other hand,
raising aspect ratio increases the power at higher tip speed ratio with
minor changes in magnitude of peak power (Figure 5.4.4).

It appears that a value of vane camber represented by B8 = 0.30
gives a fairly good fit to the test results for Rotor I for assumed aspect
ratios between 2.0 and 3.0. This is illustrated in Figure 5.4.5, where the
estimated test performance of Rotor I from Figure 5.4.1 has been superimposed
on the analytical results of Figure 5.4.4. For construction of the theoret-
ical curves of Figure 5.4.5 the uniform wake model, with B = .30, and the
proposed viscous power correction with R = 190,000 was used. It is noted
that the actual proportion of Rotor I were § = .50, A = 1.25. Evidently
the severe blockage will produce lift effects, so that the effective aspect
ratio in the tunnel is increased possibly to 20, but as explained, this
effect can not be quantitatively accounted for without developing a valid
éross—flow power correction.

Thus at this stage, with the very inadequate data, it is believed that
a pair of equations, one for the inviscid power and one for the viscous |
power correction can adequately represent the power output of the Savonius

Rotor. The cross-wind force (lift induced) effect is large, and has a large
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influence on the rotor performance. Separation effects also appear to be
important but we have no information on their relative significance at dif-
ferent tip speed ratios.

There is not enough good experimental data to check either the
inviscid power predictions, the viscous corrections, or the tunnel wall
corrections. However, it is believed that the analytical developments
presented here make it possible to establish the proper form of the
Savonius Rotor performance equations and to establish constants and

correction terms in these equations.

03 — N Rolor !
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0.1

Figure 5.4.1 Estimated Power Coefficient with Viscous Correction for Newmans
Rotor I (B = 0.5, AR = 1.25, Re = 190,000)
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Figure 5.4.2 Effect of Reynolds Number on Power Coefficient (8 = 0.5, AR = 1.25)
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Figure 5.4.3 Effect of Vane Camber of Power Coefficient (AR = 1.25, Re = 190,000)
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Figure 5.4.4 Effect of Aspect Ratio on Power Coefficient (8 = 0.30, Re = 190,000)
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Figure 5.4.5 Power Coefficient of Rotor I compared with Present Theory
(B = 0.30, Re = 190,000)
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