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a finite number of modal inflow states, with blade lift
primarily as a representation of unsteady aerodynam

that it is also effective as a means of finding the inflow distribution in forwa

Notation
a = slope of lift coefficient curve, I/rad
c = nondimensional blade chord
Cr = steady value of thrust coefficient
Cr, DT = arbitrary pressure coefficients
E[] = dynamic inflow acceleration operator
Gy = diagnonal mass matrix
Hy = factorial ratios, Eq. (26) -
i = jmaginary number, i = V —1
j = polynomial number
L[] = quasi-steady inflow operator
[L;] = cosine influence coefficients
(Lyry = sine influence coefficients
L, = blade sectional lift of g blade, N/m
m = harmonic number
M = total number of harmonics
n = polynomial number
P = pressure across disk divided by pQ*R?
Ph = normalized Legendre function of first kind
Pm, Q™ = associated Legendre function of first and second

kinds
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ordinary differential equations in time that defines
as the forcing function. Although the model is intended
ics for aeroelasticity applications, the results here show
rd flight.

number of blades

blade index

i-th component of perturbation velocity, dimen-
sionless on (R

rotor radius, m

harmonic number

nondimensional blade radial coordinate

total inflow states

time, sec

nondimensional time, T = (

flow parameter, dimensionless on (R

total flow at rotor plane divided by QR
nondimensional freestream speed
nondimensional normal component of induced ve-
locity, positive downward

function of wake skew angle, X = tan|x/2|

angle between freestream and rotor disk, positive
nose down

induced inflow expansion coefficients

steady value of af

wake skew angle, /2 — tan™'[\/p|

pitch angle of g blade, rad

blade collective pitch at blade root, rad

blade linear twist, rad

blade lateral cyclic pitch, rad

blade longitudinal cyclic pitch, rad

total mass-flow inflow, X = Ay + A,

SRl )

]

- ™S X

Va

w

B

—-—=

Il

D@ D> R R

9.
els
A

59




el

60 D.A. PETERS

A, = inflow due to freestream, V, sin(c)
Am = momentumn theory inflow, Eq. (35)
K _ = advance ratio, V. cos(a)
v. 7, ¢ = ellipsoidal coordinates, dimensionless
3 = nondimensional coordinate along freestream line,
positive upstream
p = air density, kg/m?
(p7)? = integral (0 to 1) of (P7(v))?
o = rotor solidity
i = cosine pressure coefficient
T = sine pressure coefficient
e = steady part of 7%
é7(F) = inflow expansion functions, P"'(v)/v
¢ = nondimensional pressure
Y = spacial position at rotor disk
U, = azimuth of g™ blade
0 = rotor rotational speed, rad/sec
[ = derivative with respect to nondimensional time,
()* = d/ot
(m! = double factorial of a,
=) (n—=2)(n—4)--- (). forn even;
=(n)(n—=2)(n — 4)---(1). for n odd
Introduction
Background

T he task of aeroelastic analysis of a rotorcraft involves sev-
eral key elements. First, appropriate models must be ob-
tained for the various components of the problem. These include
a lift model (quasi-steady, dynamic stall, panel code, etc.), an
induced-flow model (momentum-theory, Glauert. Drees, pre-
scribed wake, free wake, etc.), a blade model (rigid-blade,
linear beam, Hodges-Dowell, eic.), a fuselage model (rigid-
body. NASTRAN. etc.). and possibly a feedback control model
(stabilizer bar, SCAS. higher-harmonic control. etc.). Second,
these models must be coupled together and solved simulta-
neously to find a trimmed, periodic equilibrium condition. This
second task is not at all trivial and is often compounded by the
fact that the aerodynamic, structural, and control-system mod-
els are often mutually incompatible both in terms of connecting
variables and in terms of available solution strategies.

Finally, the trimmed periodic solution to this coupled system
must be perturbed (analytically or numerically) in order to
obtain a set of lincarized, periodic-coefficient equations that
can be analyzed for Floguet stability, for frequency and damp-
ing, and for the design of active control systems. This third
(and crucial) step is often hindered due to the fact that lift or
inflow models do not have finite number of state variables that
can be identified and perturbed. Instead, these models often
contain hidden states (or sometimes an infinite number of states),
which precludes efficient aeroelastic analysis and iterative de-
sign. What we need are lift and inflow models that are accurate
and that are expressive in terms of a reasonable number of state
variables. This paper develops a theory and presents applica-
tions of such a finite-state inflow model.

Previous Work

At this point. it is instructive to review the various unsteady
inflow models that are available to aeroelasticians in the rotary-
wing field. One of the best-known models is Loewy theory,
Ref. 1. It provides induced velocity in axial flight due to shed
vorticity including the returning wake. It is written as a two-

- dimensional lift-deficiency function that explicitly includes the

Theodorsen function. Thus, it is in the frequency domain and
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has an infinite number of states. Friedmann and Venkatesan,
Ref. 2, offer a methodology whereby Loewy theory can be
approximated by a finite number of states in the time domain.
Still, however, the number of states is large (17 variables at
each radial lift element on each blade). Furthermore, the Loewy
methodology does not treat induced flow due to trailing vor-
ticity and is not applicable in forward flight. Thus, the finite-
state approximation is also limited to hover or climb without
trailing vorticity.

Other pertinent methods include actuator-disk theories that
assume a skewed cylindrical wake in forward flight, Refs. 3—-
5. These include both acceleration-potential and vortex-cyl-
inder methods. They are related to our present method, but
they are inadequate in that they are steady-state models that
must assume an infinite number of blades in order to obtain
closed-form performance results. Thus, they are not unsteady,
three-dimensional wake models. One alternative model that
captures both the unsteady and the three-dimensional aspects
of rotor induced flow is that of Miller, Ref. 6. Although the
model has some very useful applications (as well as interesting
special cases), its solution is in the frequency domain and
requires integrals over the wake that can become involved. It
also has an infinite number of states and cannot be applied in
the aeroelasticity context described in this paper.

Another important class of models is in the set of vortex-
filament models, which have dominated performance calcu-
lations over the past 20 years (e.g.. Refs. 7-9). Some of these
have only trailing vorticity (with the shed wake accounted for
by Loewy or Theodorsen functions). but others have both shed
and trailing filaments. When the wake is prescribed, influence
coefficients can be calculated between the strength of vortex
filaments and the induced flow at the rotor. The result is a
fairly efficient induced flow methodology that is both unsteady
and three-dimensional. While these methods are very powerful
tools for rotor performance, they still do not meet the needs
for aeroelasticity analysis. First, the discretization process. which
Is adequate for loads, often falls short for unsteady perturba-
tions. There are four major discretizations involved. The first
is the spanwise discretization of vortex filaments. the second
is the piece-wise discretization of bound vortices, the third is
the accompanying discretization of shed filaments (often every
I5° of rotor azimuth), and the fourth is the truncation of the
wake after a few tums. These discretizations are generally much
less accurate for aeroelasticity than they are for performance.

An even more serious problem, however, is that a discretized
wake does not have well-defined states and is not easily per-
turbed. Thus, with conventional dynamic perturbations, one
either must freeze the wake (in which case unsteady aerodyn-
amics is lost) or else allow the wake to be implicitly perturbed
along with structural states (which contaminates the perturba-
tion dynamics with the dynamics of hidden inflow states).
Therefore, vortex filament methods do not satisfy our require-
ments; and there is a need for a different kind of three-dimen-
sional. unsteady wake model.

Present Approach

The inflow description of this paper is a three-dimensional.
unsteady induced-flow model with a finite number of states in
the time domain. The basis of the model is an acceleration
potential with a skewed cylindrical wake. Thus, its roots are
in Refs. 3-5. However, unlike those methods. this model is
both unsteady and is applicable to a finite number of blades.
Models with a similar basis have been used in rotary-wing
work. Ref. 10; but the unique aspect here is the solution meth-
odology. Rather than discretize the wake and couple it to a
given blade model, we expand the induced inflow at the disk
in terms of modal functions. The blade lift is also expressed
as an expression on the disk and is left general. The result is
a set of ordinary differential equations (in closed form) that
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relate the expansion coefficients of inflow to the expansion
cocfficients of arbitrary lift. The inflow expansion coefficients
thus become states of the model. and the forcing terms can be
derived based on any lifting theory (linear or nonlinear).

The theory of dynamic inflow, Ref. 11, can be thought of
as a special case of this theory but with only 3 inflow expansion
terms (uniform, side-to-side gradient. and fore-to-aft gradient).
Furthermore. Ref. 12 (in which the foundations of this new
theory are set forth) shows that the new model implicitly in-
cludes Theodorsen and Loewy effects (from the shed wake) as
well as Prandtl-Goldstein tip losses (due to the trailing wake).
Thus. the method is truly an unsteady. three-dimensional wake
model with a finite number of states. The method is not ex-
pected to replace vortex-filament theories for performance work
due to the lack of wake distortion or wake roll-up in the model.
Still, the present method should be capable of predicting rea-
sonable unsteady induced-flow distributions in forward flight
in order to provide a valid trim state about which to perturb.
Therefore, in this paper, we concentrats on correlations of the
theory with induced-flow measurements in forward flight.

Formulation of Theory

Fluid Mechanics

For an incompressible potential flow with small perturba-
tions, the continuity and momentum equations can be written
in index notation as

g, =0 (N

3 — Vagig = — 9, (2)

where g, are the velocity components. @ is the pressure, ( )y
is a nondimensional time derivative, and ( ) ¢ is the derivative
along the freestream line.

From Eq. (2), it can be seen that spatial gradient of the
pressure is a superposition of contributions from both the un-
steady rate of change in velocity and the gradient of velocity
along the freestream direction. This suggest a division of the
pressure inte two parts (i.e.. the part due to momentum flux.
denoted as @Y. and the part due to acceleration, noted as ®*).
Then the pressure can be expressed as

o = Y + P4 (3)
d,;, = &Y + DY (4)
DY = V.gi: (5)
A = - g, (6)

If we differentiate Egs. (5) and (6) with respect to the index
i and use the continuity equation, Eq. (1), a Laplace’s equation
can be obtained for each pressure function as follows,

®Y, =0, P4 =0 M

Equation (7) indicates that each part of the total pressure sat-
isfies Laplace’s equation. Thus, ® can be represented as an
acceleration potential.

When Laplace’s equation is written in ellipsoidal coordi-
nates, it can be solved analytically by the method of separation
of variables. The potential functions thus obtained can be com-
bined to given an arbitrary pressure discontinuity across a cir-
cular disk, Ref. 3. When the condition of a bounded solution
is invoked, the general form of the acceleration potential be-
comes
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=

8=3 3

m na=m+fm+d.. ..

Prw)Q2 (im)[Cy(Ficos(mib)

+ D;:’{?)sln(m-nll-)] (8)

where P™(v) and Q7(im) are associated Legendre functions of
the first and second kind, respectively; C)y and D arc arbitrary.
time-dependent coefficients: and v, m, and § are ellipsoidal
coordinates as described in Ref. 11.

It is important to note that, since v is positive above the disk
and negative below the disk, the functions P7'(v) withn + m
odd yield a discontinuity in pressure across the disc at which
n=0,v=\VI -7, and & = . Therefore. rotor lift can
be obtained from the pressure difference between the upper
and lower surfaces of the disk,

x

p =S Prey(tcos(mb) + mp(Dsin(mi)]  (9)

m.n
where

Pr) = (= 1) P;—L”) (10)

(om)? = 1 (n + m)! an
Pad” = 2n + 1) (n — m)!

e = (=1 1208i0)p3CT (12)
= (= 1) 12Q0 00Dy (13)

Operator Notation

To establish a relation between the induced flow of a lifting
rotor and the blade loads, let us start with Egs. (5) and (6).
Integration of Eq. (5) along the freestream direction results in

_ Lr v
a= -y ), ®hde (14)

Then, from Eg. (6), we have

*

q; = - &4 (15)

Now. if we are only interested in the normal component of
induced inflow at the rotor disk, Egs. (14) and (15) can be
placed in the following forms.

1 [*adY
w = _V_,,J’u e dE (16)
dw adr
e eI | | 1
di 3z =0 an

Equations (16) and (17) can be thought of as linear operators,
w = L[®Y] (18)

* dw
= — = A 1
w 4 E[ ] (19)

At this stage. we assume that the operators L and E are in-
vertable, and then we obtain an equation for inflow in the
following form

E-'[w]* + L' w] = &4 + PV =& (20)
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If we choose a proper series expansion for induced flow, each
of the operators L and E can be expressed in a matrix form,

“which allows a matrix inversion.

Analogous to the expansion of pressure, the induced flow
can be represented in terms of azimuthal harmonics and radial
distribution functions. The best choice for the radial expansion
has been found to be

w(F, U, 1) = 2, &j(F)lej(P)cos(ri)
r.J

+ BHD)sin(rin]  (21)

where ¢7(7) = Pm(v)/v and v = V1 — 7. Interestingly.
the &7(F) are simple polynomials in the radial position, 7, and
have only even (or odd) powers of r ranging frommton — 1.

o7(F) = V@n + DH; X
(n + g)!!
(g — m)! (g + m)!i(n — g — 1!

?q( - ]}(q'—m w2

(22)

With. pressure and velocity each represented by the above
expansions, the operators in Eq. (20) can be expressed as
square matrices that relate the pressure coefficients (77°.
774) to the velocity coefficients («f, Bf) (for details, see Ref.
13). Thus, Eq. (20) takes the form

NG Y o)™ + 2V (L7 {of} = (o (23)

(NG By + 2V (B} = (7} (28)

where G7T results from Eq. (17) and is given by
4
Gy ==—Hp (25)
T

Ea (n+m— n—-m~— DN
mo (n + m)'(n — m)!!

(26)

and where L and L* arise from Eq. (16) and depend on the
wake skew angle x (x = 0° in axial flow through x = 90° in
pure-edgewise flow).

[L37) = (X™) [T%m 27

(L1 = (X~ 4+ (= 1) Xty [Tom (28)

I

[Lirp = (X!m=rd = (—1)! X+ [Tpm (29)

where [ = min(r, m), and X = tanixa’?.[. Notethat 0 = X =
1. All sine and cosine elements depend on the same coefficients
F},T’ that can be found in closed-form as follows.

(— ]){nﬂ'- 2r)i2

VH] HY

2NV@n + D)2 + D

(+a)dj+n+2—n?—-1]

rim =

forr + meven (30)
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. T sgn(r — m)

mOUNHTHIANV@n + D2j + D)

forr + modd,j=n =1 (31)

[m=0 forr+modd,j#n %1 (32)

L is partitioned such that the superscripts are row-column
indices of the r, m partition, and the subscripts (j, n) are the
row-column indices of the elements within each partition. We
must note, however; that these indices do not take the traditional

matrix values of 1, 2, 3, - - -. Instead, for the cosine equation,
m=20,1,2,3,- - - for the sine equation, m = 1,2,3,+ - -
and foreitherset, n = m + I, m + 3, m+ 5, --- (r and

j follow the same convention). -

As a further extension of the theory, we have replaced V.
with an equivalent V to account for energy added to the flow
from the rotor

24 (N4 AN
T ( m)

A=A, + A, (34)

where V comes from momentum considerations, Ref. 11; p
and A are the inplane and normal components of Vx; and A,
is the momentum-theory value of steady induced flow for a
trimmed rotor,

1
A, ==
e

I

=|Ol

I =+/3a9 (35)

T

In Eq. (39), E-, is steady thrust, @Y is the steady uniform
induced flow, and V; = Vu? + A2, The wake model can
then be considered as a model for perturbation pressure and
velocity about this steady, uniform pressure

o V3
W= Cr (36)

Following Ref. 14, a completely nonlinear version of Egs.
(23) and (24) can also be obtained if we

1) take V as Vi in the first column (r = 0) of [L¢]™', but
as V for r # 0.

2) treat all quantities as total rather than perturbation.

3) geplace the static \,,, Eq. (35), by the unsteady value,

3af.

This makes the theory nonlinear, in that V and V7 will depend
upon the states, «7'. The nonlinear version is used in the cor-

relations in this paper.

Generalized Forces .

In order for the model to be coupled with blade lift theory,
the 77¢ and 77" need to be appropriately related to the blade
lift. If we treat the pressure across the disk as a lifting line for
each blade, rotating with angular velocity {1, then the azimuth
of the ¢ lifting line (i.e., blade) is &, = (¢ + (g — 1)27/
Q. These rotating pressure spikes can then be expanded as in
Eq. (9) to obtain the pressure harmonics, Ref. 12.

o 1 @ | Lq N
7%= — > ) pﬂrR3¢a,(r)dr (37)

27 g=1
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me = 1 i J-1 e -”‘(F'}dF cos(mb,) (38)
fig = w4 [ Jo pOPR? T h !

1 o J'I Lq .
==y [ o PR & (F)dF |sin(mb,)  (39)

mg=1

where L, is blade sectional circulatory lift that can be evaluated
from a lift theory. Since the wake and lift are now treated
separately, the lift theory need not be linear. It can include
dynamic stall or other nonlinear effects. Although the above
integrals assume that the lift is concentrated along a lifting line
at y,, Ref. 12 shows that the integrals are easily modified to
include lift distributed over a chordwise surface. Note also that
the 7™ take on the character of generalized forces. Thus, we
have a complete, three-dimensional unsteady wake model writ-
ten in terms of a finite number of states af and 3.

Computation of Induced Flow

The generalized dynamic wake equations have been applied
to the prediction of dynamic response of the flow field asso-
ciated with an isolated rotor in forward flight. The computation
of induced inflow at the rotor disk consists of solving the system
of Egs. (23) and (24), simultaneously. In order to do this, the
forcing functions on the right-hand side of the equations (i.c..
+m¢ and 77%) need to be evaluated from Egs. (37)-(39). There-
fore, in addition to the basic dynamic wake equations, we will
proceed to establish the expressions for lift.

Blade Lift Model

For this induced inflow computation, we have made the
following main assumptions: 1) reversed flow neglected, 2) blade
angle of attack is assumed small, 3) there is no blade dynamics.
4) there is no interaction between fuselage and rotor aero-
dynamics, and 5) the reduced frequency is small enough
that 8 and 6 terms can be neglected.

Based on these assumptions, the blade sectional lift can be
written as

Lo(F, . 1) _ b _ . )
W = Eac{_r + psind,)”

C(w(F b 1)+ A \
{B‘“ (F + wsind,) } 0

where 8,, the ¢'* blade pitch angle, is
8, = 8, — 0,7 + 8. cos b, + B, siny,  (41)

and w is the induced inflow as given in Eq. (21). It is noted
that the induced inflow, w, enters the blade lift expression and
couples the sine and cosine parts of the dynamic wake equa-
tions. Substitution of the blade lift, Eq. (40), into Eqs. (37)-
(39) yields generalized-force integrals, (1%, 77, and 7).
Although Eq. (40) appears to be a two-dimensional quasi-steady
model, the inflow feedback through w implies that both the
unsteady effects (e.g., Theodorsen and Loewy) and tip relief
effects (e.g., Prandtl and Goldstein tip-loss) are included im-
plicitly.

Solution Method

The resultant set of coupled inflow and lift equations is a
system of ordinary differential equations with periodic coef-
ficients. These can be solved by a variety of methods including
harmonic balance or direct time-marching. In either event, one
must also find the trim settings to give a desired thrust coef-
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ficient and desired roll and pitch moments. In our model. Gy
(2/7/3)79; and roll and pitch moments are proportional to
t1¢ and 7}*. This makes trimming a straightforward process.
In the work here, we use time-marching with the auto-pilot
system described in Ref. 15. For a typical problem with 33
flow states, the method requires 2 minutes CPU on a CDC
855. About half of this is to find trim. This CPU time is much
faster than either free-wake programs or prescribed-wake codes.

The choice of inflow states is based on the relationships in
Table 1. The table shows the number of radial shape functions
for each harmonic (m) in order to have radial terms up to a
given power of 7. For example, for terms up to 7%, the m =
0 harmonic would have three radial terms;the m = landm =
2 sine and cosine harmonics would have 2 terms each; and the
m = 3 and m = 4 sine and cosine harmonics would have one
term each. Thus, a total of 15 terms (or state variables) would
be used. If we desire more polynomials without increasing the
total number of harmonics, we choose a row corresponding to
a larger power of 7. For example, for m = 4 and 7*. this would
be3 + 2(4 + 4+ 3 + 3) = 33 total states. S.

Experimental Data

All of the experimental data used in this paper are from the
LDV measurements made by the Army Labs at NASA Langley.
Ref. 16. There are two different blade planforms for which
data are available. One set of blades has 13° of linear twist, a
uniform chord over the inner 75 percent radius, and a 3-to-1
blade taper over the outer 25 percent. The other blades have
8° of linear twist and are constant-chord. Each set has a 25
percent root cutout, a solidity of 0.0977. and was tested as a
4-bladed configuration at C; = .0064. Results for the tapered
blades are available at w = .15 and p = .23. Results for the
rectangular blades are available at these two advance ratios and
at w = 0.3, Data at the lower advance ratios are for 3° nose
down shaft angle, and data at u. = 0.3 are for 4° nose down
shaft angle. The measurements are taken one chord above the
tip-path plane in contrast to our calculations, which are at the
rotor plane. All results have cyclic flapping trimmed to zero.

The experimental data also include values of the trimmed
pitch settings for each data condition. We have compared these
with the trimmed pitch settings from our auto-pilot. The average
difference in settings for the tapered blades is 0.5°, and the
average difference for rectangular blades is 1.1°. From our
model, the 3/4 radius trim settings are nearly identical for the
two sets of blades.

Contour Plots for Tapered Blades

Figure la gives computed induced flow contours with four
harmonics and with 135 state-variables at w = 0.15. Figure 1b
gives the measured values at the same condition. One can see
that the computation with 15 state variables gives a good rep-
resentation of all flow characteristics including: 1) The exis-
tence of upwash at the front of the disk, 2) the “‘double-5™
shape of the w = .02, .03, and .04 contours around the w =

Table 1 Number of Shape Functions per Harmonic

Harmonic Number, m
Highest Total

Powerofr 0 1 2 3 4 5 6 7 8 Inflow States
0 1 1
1 1 1 3
2 2 1 1 6
3 2 2 1 1 10
4 3 2 2 1 1 13
5 3 3 2 2 1 1 21
6 4 3 3 2 2 1 1 28
7 4 4 3 3 2 2 1 1 36
8 s 4 4 3 3 2 2 1 1 45
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Figure 1a Theoretical induced flow distribution, tapered blades, p =
0.15,M = 4,5 = 15.

Figure 1b  Experimental induced flow distribution, tapered blades,
p = 0.15.

01 contour on the retreating side, and 3) the skewing of in-
duced flow toward the advancing side with a maximum of w =
0.06 at & = 30° 7 = 0.85. One discrepancy. however, is the
overly large gradient in computed induced flow at ¥ = 180°.
This discrepancy is alleviated, however, when (with M = 4)
we increase to 33 state variables, Fig. lc. The correlation
becomes better yet when we add the flow over the fuselage
from Ref. 17. Fig. 1d. A similarly good correlation is seen for
w = 0.23 when we include 33 states and fuselage flow, Figs.
2a-2b.

We have seen in Fig. 1 that the flow over the fuselage gives
a marked improvement in data correlation. Figures 3 and 4
show the effect of fuselage flow in more detail. In these figures.
we plot induced flow with and without fuselage flow both on
the longitudinal centerline (& = 0°, 180°) and on the lateral
center line ( = 90°, 270°) at . = 0.15 and 0.23. Results
show no cffect of the fuselage on the flow at the lateral cen-
terline, but they show a noticeable improvement in correlation
on the longitudinal centerline. This improvement is more sig-

JOURNAL OF THE AMERICAN HELICOPTER SOCIETY

&

QO
1]

1]
‘o

Figure Ic Theoretical induced flow distribution, tapered blades, p =
0.15,M = 4,5 = 33.

Figure 1d Theoretical induced flow distribution, tapered blades with
fuselage, p = 0.15, M = 4, s = 33

nificant at w = 0.23 due to the larger relative freestream.
Therefore, flow over the fusefage is included in all results to
follow.

Convergence of Method

We have seen in Figs. la—lc that the correlation at p. =
0.15 improves at the leading edge of the disk if more inflow
states are added. To study this effect further. we now investigate
in detail the influence of the number of states on the conver-
gence and correlation. Figurc 5 shows the identical centerline
results as in Fig. 4 (. = 0.23 with flow over the fuselage),
but the number of states is increased from 15 (7* terms) to 33
(7% terms). Convergence to the measured values at the Jeading
edge is clearly seen from comparison of Figs. 4 and 5. Figure
6 details this convergence for . = 0.15. Figure 6a gives results
at & = 180°, the leading edge, where we saw the greatest
effect in Fig. 1. The three results arc for 15, 33, and 51 state
variables, respectively. It is clear from the curves that the
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Figure 2a Theoretical induced flow distribution, tapered blades with
fuselage, p = 0.23, M = 4, § = 33
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Figure 2b Experimental induced flow distribution, tapered blades,
p = 0.23.
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Figure 3b Lateral variation of induced flow, tapered blades, p =
0.15,M = 4,5 = 33.
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Figure 5b Lateral variation of induced flow, tapered blades with
fuselage, p = 0.23, M = 4,5 = 33.

computed flow at the rotor edge is converging to an answer
very close to the measured flow. The results with § = 15 show
an excessive inflow gradient near 7 = 1, whereas results for
S$ = 33 and § = 5] are moving toward the data and have a
“flat’" distribution for 0.8 < 7 < 1.0. Figures 6b and 6¢ show
the same comparison for & = 0°and ¥ = 30° (the latter being
the azimuth of maximum induced flow). In these cases. the
flow at the trailing edge has already converged; but the flow
in the center of the disk is changing with §, due to convergence
on the effect of the root vortex. Interestingly, the data at § =
0° do not seem to agree with the calculations at7 < 0.4, while
those at s = 30° do. We believe that the hub and fuselage-
wake interaction may account for the discrepancy at & = 0°,
F <04,

In general, |5 state variables capture the major flow effects,
but 33 states capture more detail at the rotor edge. We have
also computed inflow with 8 and 12 harmonics, respectively.
There is no appreciable change in time-averaged inflow. There-
fore, M = 4 1s sufficient for the tapered blades.

Comparison with other Methods

Although our model is not designed as a detailed performance
model, it is interesting to compare it with other, more perfor-
mance-oriented models. Figure 7 shows contour plots for the
tapered blade at p = 0.15 from free-wake and prescribed-
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wake models, Ref. 18 (neither of these results includes flow
over the fuselage). These can be compared with the data and
with our computations in Fig. 1. We see that the present model
is as good or better than these other methodologies, despite its
simpler assumptions. For example, the current model predicts
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Figure 7a Computed induced flow distribution, prescribed wake,
tapered blades, p = 0.15.

Figure 7b Computed induced flow distribution, free wake, tapered
blades, p = 0.15.

the maximum measured contour of 0.06, whereas the meth-
odologies in Fig. 7 do not. A possible explanation for this
better correlation is that, although our model lacks wake dis-
tortion and wake roll-up, it has no discretization errors. In other
words, the wake is continuous along the blade span and is shed
continuously behind the blade rather than being modeled by a
few vortex panels. Thus, for some problems (especially nearly
flat wakes as we have for this data set), our model may some-
times out-perform other wake models due to reduced compu-
tational approximations.

Rectangular Blades

We now turn to correlation with the data for rectangular
blades. Figures 8a—f compare theoretical and experimental con-
tour plots at p = 0.15, 0.23, and 0.30. The theoretical results
are for S = 33 and include flow over the fuselage. In general.
the theory shows good agreement with the major flow features.
but the correlations are not as good as for the tapered blades.
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This discrepancy at the tip can be seen more clearly in results
along the lateral and longitudinal axes. Figs. 9a—f. Figures 9a-
b show small errors in the tip regions near 7 = 1, similar to
the unconverged results in Fig. 4. However, the correlation at
the center is better than in Fig. 4. The overall correlation de-
teriorates at o = 0.23, Figs. 9c~d, and at p. = 0.30. Figs.
9e—f. We have also done this computation with up to 51 states.
Correlation improves at the tips, but is still not completely
accurate.

The difference in convergence between rectangular blades
and tapered blades is due to the fact that rectangular blades
with 8° of twist have less lift inboard and more lift outboard
than do the tapered blades with 13° twist. Thus, the tapered
blades have a stronger root vortex (slowing convergence in the
center), while the rectangular blades have a stronger tip vortex
(slowing convergence at the blade tips).

Although the above correlation is not as good as it was for
the tapered blades, the accuracy must be placed in perspective.
Reference 19 provides a comparison of these data with five
other wake models. A comparison of our results with those in

Figure 8a Theoretical induced flow distribution, rectangular blades
with fuselage, p. = 0.15, M = 4, § = 33.

Figure 8b Experimental induced flow distribution, rectangular blades,
p = 0.15.
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Figure 8¢ Theoretical induced flow distribution, rectangular blades
with fuselage, p = 0.23, M = 4, § = 33.

Figure 8 Experimental induced flow distribution, rectangular blades,
p= 0.23.

Ref. 19 shows that, despite the slow convergence, the present
model with § = 33 does as well or better than the other models
tested,

An important point is that, despite the fact that our model
does well for tapered blades (and fairly well for rectangular
blades), a detailed induced flow computation is not the end
product of this theory. The utility of our model comes from
the need to perturb the wake about this steady-state solution.
It is thesc aeroelastic perturbation equations that are best for-
mulated with our finite-state model. Thus, we do not need to
be completely accurate on induced flow or even on lift. We
do nced to be accurate on the generalized lifting forces asso-
ciated with wake perturbation. Thus. modeling of flow details
is much less important for aeroelasticity than it is for perfor-
mance.

Summary and Conclusions
An unsteady. three-dimensional induced-flow model has been
successfully applied to the computation of the induced-flow
distribution of a rotor in forward flight, and numerical results

Figure 8¢ Theoretical induced flow distribution, rectangular blades
with fuselage, p = 0.30, M = 4, § = 33.

Figure 8f Experimental induced flow distribution, rectangular blades,
p = 0.30,

have been compared against LDV measurements for induced
flow at the disk. The major conclusions of this comparison are
given below. However, these must be tempered by the facts
that the comparisons are only for two particular blade planforms
at three advance ratios. and that results are obtained enly for
two shaft angles, one value of Cy. and one solidity.

1. The time-averaged induced flow from this method gives
good correlation with measured data with the exception of just
behind the pylon at the lowest advance ratio, and near the blade
tips for rectangular blades ar high advance ratios.

2. The method performs as well as or better than other codes
that have been applied to this data; but the new method takes
less computing time, and it is better suited for aeroelastic anal-
ysis.

3. Results with only 4 harmonics and 15 state variables
converge to all fundamental characteristics of the time-averaged
flow. However, for accurate flow near blade tips (especially
at ¢ = 180°), we require 33 state variables for tapered blades
and more than 51 states for the rectangular blades.
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4. For accurate correlation, one needs the flow over the
fuselage to be included in the analysis.
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