














































































































































































































 
 
 
 
 

CONCLUSION 
 
 
 

 The goals of this research have been accomplished.  Dynamic pitching moments 

were added to the AeroDyn subroutines, which are part of the ADAMS, YawDyn and 

DynStall computer models.  The AeroDyn subroutines calculate aerodynamic forces that 

are present on wind turbine blades.  The AeroDyn subroutines, which incorporate the 

Beddoes-Leishman model for unsteady aerodynamics and dynamic stall, were able to 

successfully predict dynamic pitching moment coefficient values for conditions that 

occur with wind turbine blades.  However, in order to increase the accuracy of the model, 

some changes were made to the Beddoes-Leishman methods including the following: 

1. The static separation point, , was calculated from equation 9 instead of the 

empirical equation used by Beddoes and Leishman.  This allows for 

representation of separation point values throughout the entire 360 degree 

range of angles of attack. 

f

2. An approximate value of the dynamic angle of attack, ′′α ,  was calculated 

from equation 13.  It was then used to retrieve the corresponding CMF from a 

“look-up table.”  Beddoes and Leishman recommend using a polynomial 

relationship (which is a function of ′′f  and CN).  However, this method only 

works for a small range of angles of attack. 

3. A saturation function was added to the model to control the values of CMI and 

CMQ when the blades were encountering a sudden change in pitch and pitch 



rate (such as in the vicinity of the tower’s shadow).  Without the saturation 

function, CMI would display large spikes under this circumstance. 

The resulting model was able to predict dynamic CM values recorded during 2-D wind 

tunnel experiments at OSU for three different airfoils at Reynold’s numbers of 1.0 and 

1.5 million at reduced frequencies up to 0.09.  The model also predicted CM data that 

were gathered during field tests on the CER wind turbine at NREL’s NWTC. 

Finally, an ADAMS model of the CER was run with a pitching hinge at each of the 

blade roots.  The stiffness of the hinge was varied in order to see how sensitive it was to 

the blade’s pitching motion.  Results indicated that in light (e.g., 12m/s), steady winds the 

pitching natural frequency of the blades needs to be very soft (near 1 p) in order for the 

pitching moment to play a significant role in causing torsional blade motion.  However, 

as the wind becomes stronger (e.g., 20m/s average wind speed) and turbulent, a blade 

with a 7.5 p pitching frequency is noticeably influenced by the inclusion of the pitching 

moment data.  Pitching moments affect the angle of attack, pitch angle, power and root 

flap moment of a blade.  Therefore, it is important to consider the contributions of 

pitching moments when similar conditions exist.  It is also important (even with stiff 

blades) to include pitching moments in the aerodynamic calculations if the blade has a 

sloppy pitch control system, therefore allowing the blade to easily pitch at its root.  When 

this situation occurs, even a small pitching moment can pitch the blade a significant 

amount. 



Topics for Future Work 

More work can be done on the pitching moment calculations to increase their 

accuracy and reliability, including the following: 

1. Test more airfoils. 

2. Revisit the time constant values for a larger number of airfoils and 2-D test data at 

higher reduced frequencies. 

3. Replace the saturation function with the ability of the model to incorporate the 

effects of plunge. 

4. When wind tunnel data on the CER wind turbine becomes available, compare 

simulations to this data. 

This research would add further to the reliability of the dynamic pitching moment 

calculation. 
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