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ABSTRACT
There is a substantial body of ongoing research improving the Blade Element Momentum

(BEM) theory and applying it to the optimization of wind turbine rotors. Both of these

developments challenge the suitability of fixed point iteration schemes being applied to

advanced BEM models. This article explores the mathematical behavior of the BEM

equations, with special attention to the application of numerical methods. Under special

conditions, multiple solutions will exist when the airfoil is stalled. This situation gives

increased uncertainty, where uncertainty in airfoil behavior is already high. This also

demonstrates that there could be circumstances where the wake state has weak

dependence on blade state. Fixed point iteration and Newton-Raphson numerical methods

are investigated in this paper. Both methods will become unstable under certain conditions.

The investigation shows that the Newton-Raphson method has well defined conditions for

instability in terms of design variables and airfoil properties. By comparison, the fixed point

function used here exhibits instability over a larger range.

1. INTRODUCTION
Blade Element Momentum (BEM) theory is widely used to model the aerodynamic

performance of wind turbines. The efficiency of these methods has made them common in

many design codes. Despite their inherent simplicity, these methods have proven reliable

enough for design and certification. Consequently, there is still active research into design

methods based on BEM theory [1].

Despite their widespread use, these methods have several shortcomings. Owing to the

basic assumptions, they are not suitable for out-of plane blade geometry, like coning and

winglets. Furthermore, the assumption of radial independence between the sections

undermines their validity in unsteady flows. Thus, the methods are limited for modeling

yawed flow and highly stalled conditions, often seen in turbine operation. Several models

have been proposed in recent history to deal with these issues.

The work of Du and Tangler has addressed the problem of stall delay [2, 3]. Shen has

provided alternative models for the tip loss effects [4]. Other researchers have focused more

on problems regarding the momentum model. Chaney et al. developed a method for

incorporating the effects of an expanding wake [5]. Madsen et al. compared BEM to actuator



disc models to develop two correction models for deviations in the local power coefficients

[6]. Haans et al. developed an advanced model for yawed flow [7]. The work of Crawford gave

a novel way of modeling coned rotors [8]. Finally, Sharpe incorporated wake rotation effects

play in the axial momentum equations [9, 10]. Martinez et al. has used the momentum model

developed by Sharpe, along with airfoil post stall corrections, to give improved predictions

for stall regulated wind turbines [11].

Due to its efficiency, BEM theory is being applied in turbine optimization tools. Xudong 

et al. have successfully applied BEM based optimization to design several wind turbines of

various sizes [12]. The early work of Fuglsang et al. created a Multi-Disciplinary Optimization

framework with BEM, structural and fatigue models to minimize the cost of electricity, with

sequential linear programming and the method of feasible directions [13]. The work of Clifton-

Smith et. al. applied genetic algorithms with BEM to optimize energy capture and startup time

[14, 15]. The work of Benini et al. is another example of applying genetic algorithms, in this case

applied to the multi-objective optimization of a stall regulated wind turbine [16]. The work of

Crawford et al. applied BEM with a generator model and a low frequency noise model to

optimize the turbine for minimal cost of electricity and minimum energy pay back period,

with gradient based techniques [17]. Another work by Crawford et al. applied gradient based

techniques with advanced BEM methods to optimize a unique rotor design that had hinged

rotor blades [18]. The importance of convergence is touched upon by Lanzafame, who

demonstrated why sources of numerical instability must be reduced in optimization

applications [19]. Similarly, the work of Hjort et al. showed how poor convergence introduces

noise into the optimization. This noise compromised the gradient calculations, thus,

undermining any gradient based methods in their study [20].

The typical approach to solving the momentum equations is to analytically reformulate

the expression as a fixed point function. Here, the induction at a future iteration is expressed

as a function of induction at the current iteration. For the basic BEM equations, this method is

both fast and accurate. However, the benefits of a fixed point scheme are diminished in many

of these advanced BEM models. The work by Crawford showed that applying the out-of-plane

correction models in unsteady simulations slowed the convergence [21]. Furthermore, the

implicit definition of induction in the momentum equations given by Sharpe makes it difficult

to formulate a fixed point iteration function [9]. Thus, the fixed point iteration scheme may not

be suitable as a general solver for all forms of BEM. It is clear that other numerical techniques

need to be investigated to enable the use of all advanced BEM based methods.

When a method is applied in a optimization application, the numerical method must be

both stable and efficient for it to be practical [19, 20]. This defines the criteria for evaluating an

alternative method. The Newton-Raphson technique has very fast convergence, however it

also comes with known instabilities. Fortunately, these instabilities can be detected and dealt

with by other methods. Overall, this article investigates numerical methods for solving the

BEM equations. This paper first explores analytically the predicted behavior of the BEM

equations. The stability of two numerical methods is then quantified over a range of

parameters, followed by recommendations for the application of these methods. Speed is not

the focus of this article; the numerical methods under consideration are fast for most

problems, thus we assume that each method already meets the efficiency criteria.

The approach taken in this article explores a basic form of the BEM equations. This allows

the major trends of the equations to be identified quickly and simply. The equations selected

here will have a similar form to the more advanced forms that motivated this work. This

similarity will make the conclusions drawn here applicable to other forms of BEM. Many of

the conclusions from this study will apply to any monotonic momentum equation. The
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conservation of momentum requires any such model to be monotonic, hence, these

conclusions are universal. Furthermore, only the axial momentum equation is explored, with

a simple turbulent wake correction model. Neglecting the tangential component of BEM

theory is justified since it has a small influence of the final solution.

2. BLADE ELEMENT MOMENTUM THEORY
The key parameter in solving the momentum equations is the induction at the rotor plane.

This affects the angle of attack and all the aerodynamic forces on the blade. The induction

solution is achieved when the thrust coefficient of the axial momentum equation (1) equals

the thrust coefficient of the blade element equation (2).

Ctm = 4a (1 − a) (1)

(2)

Both equations give the coefficient of thrust Ct , which is a non-dimensional thrust

parameter. The induction is given by a ; its effect on equation (2) is not obvious, but will be

shown in the definition of the terms in equation (2). The effect of blade size is captured in the

solidity term (σ) ; this is the ratio of blade area to swept area. The effect of the airfoils is

captured by the normal force coefficient; this parameter is found with equation (3). Here, the

sectional coefficient of lift (cl ) and sectional coefficient of drag (cd ) are dependent on the

angle of attack (α), which is the difference between the local flow angle (φ) and the twist

angle (θ) – see equation (4) and figure 1. The local flow angle is governed by equation (5),

where λ is the local speed ratio, which is the ratio of the blade speed to the undisturbed wind
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Figure 1: Geometric convention for blade element theory.



velocity. The effect of the rotor’s angular speed is captured by the velocity ratio (W/V∞) ; this

is the ratio of air speed relative to the blade, to the undisturbed wind speed. This parameter

can be given in terms of model variables with either expression (6) or (7). For the remainder

of the discussion, only the first version (6) will be considered.

(3)

(4)

(5)

(6)

(7)

The domain of the axial momentum equation (1) is limited to low values of thrust before a

turbulent wake state is entered. When circumstances arise where the thrust is too high, the

turbulent wake function is used instead, equation (8). The function given here is not strictly

based on experimental data or models presented in literature, but selected for its simplicity to

illustrate the numerics of the methods. The analytic study will not look at the turbulent wake

state, leaving its examination to the numerical study in section 3.

(8)

2.1. Application of a Newton-Raphson Iteration Scheme
The residual expression, equation (9), is given by subtracting equation (2) from equation (1).

This equation is used by a Newton-Raphson iteration algorithm to find a solution for a .

Numerical instabilities will occur when the slope of this equation approaches 0. The

circumstances for this condition to occur can be investigated by differentiating equation (9),

to yield equation (10).

(9)

Term I in equation (10) is the gradient of the momentum equation; this term is always

positive for any realistic model, including turbulent wake models. The source of the instability

is the blade element gradient, labeled as term II. An important quality is that solidity acts as

(10)
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an amplifier for this term, thus any negative quantity for the right hand side of II can yield an

instability if solidity is scaled properly.

Further insight can be gained by looking where terms A and B combine to give a negative

quantity. Term A accounts for the effect of changing W/V∞. The first component of this term

will only be negative when the turbine is reversing the flow. The second component has

similar trends, and will only be negative when the blade element is applying forces that

accelerate the flow. Thus, this term can only contribute to instability when the rotor is

operating in off-design conditions. For a well designed turbine, this instability is rare.

The B term accounts for variation in the blade force term. The first variable in this term is

the local speed ratio; like solidity, this term can be considered an amplifier. The remaining

terms are dependent on the blade element state. Here the angle of attack has a strong

influence. This would give strong coupling to the blade twist and local speed ratio. The first

two terms account for the change in lift and drag coefficients. The remaining terms account

for variation in the direction of blade forces.

The first term (i) shows that a negative lift slope can lead to instability; this will occur

when the blade is stalling at either positive or negative angles of attack. The second term (ii)
shows that variation in drag contributes to stability at positive angles of attack, and is

detrimental elsewhere. The third term (iii) shows that the actual drag force has a stabilizing

effect overall. The fourth term (iv) shows that the lift force can have a stabilizing effect at

negative angles of attack, but introduce instability as the flow angle increases, and lift forces

are high.

2.2. Application to Fixed Point Iteration Scheme
The fixed point iteration function for the BEM equations is developed by assuming that the

flow angle is constant, then solving equations (9) for R(a) = 0. The fixed point iteration

function for the version of BEM presented here is given in equation (11).

(11)

By explicitly defining induction as a function of blade conditions, the only source of

instability is in the lift and drag response of the blade itself. A fixed point iteration will diverge,

whenever the gradient of the function f (a) has a magnitude of 1 or greater. This condition was

applied to equation (11), to define the conditions for stability given by equation (12). The

reader should be aware that both equation (11) and (12), are not valid beyond the onset of

turbulent wake conditions.

The inequality given in equation (12) shows three conditions. Which equation is active is

dependent on a domain constraint. The middle condition can be ignored, as this will only be
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active when the turbulent wake conditions occur and this expression is not valid in any case.

The left hand side of all the inequalities is dependent on the variation of the normal force

coefficient. Note that is related to airfoil coefficients through equation (13). The right hand

side of all the conditions is a function of the normal force coefficient. Inspection of equation

(12) shows that the stability condition is similar to the domain constraint. This means that it is

likely that the favorable condition will be active, giving a bias towards stability.

(13)

Stability cannot be guaranteed however, since the first condition can be active whenever

the normal force gradient is relatively large. Under these conditions, divergence occurs when

the normal force coefficient is still large enough that term II is similar in magnitude to term I.

This may occur over a wide range of flow angles.

Another source of instability is in the turbulent wake functions. Each turbulent wake

model can form a residual expression that could be solved to develop a fixed point function.

For the turbulent wake model used here, the fixed point function resembled the quadratic

formula. For the equation used in this study, the domain is bounded, and the range is

unbounded. Both of these qualities would lead to a diverging solution. Other turbulent wake

models would have a different form, with their own unique stability characteristics.

An important point to note is that in a Newton-Raphson iteration, the stability is

independent of the momentum model, and strongly dependent on the airfoil characteristics.

The stability characteristics of a fixed point scheme are far more complicated, and unique for

every momentum model or turbulent wake model.

3. NUMERICAL ANALYSIS
To expand on the analytic investigation, a set of numerical results were analyzed. The 

first goal was to identify a) whether multiple solutions to the BEM equations could exist,

then b) regions of numerical instability and finally c) how well these regions correlated

with the angle of attack. The role of airfoil drag is debatable. Some researchers propose

that it should not be used to determine the induction, since the effect of drag in the

momentum balance is limited to a narrow region of the wake [22]. Other researchers

assume an azimuthal averaged loss of momentum, that includes the effect of drag [21]. To

explore the effect of these assumptions, a second set of data was generated, without using

the drag coefficient.

3.1. Details of the Study
The theory described in section 2 was implemented in a computer program. The theory has

four independent variables: blade twist (θ), the local speed ratio (λ), solidity (σ) and axial

induction (a). The first three are effectively design parameters fixed by section location, rotor

speed and inflow conditions, while the last one is a state variable that would be iterated on by

a numerical solver.

For a given set of design parameters, the code sampled induction values ‘a’ between −0.25

and 1.0 inclusive with a step size of 0.001. From that, the code determined the values of

equation (9) and equation (11) at each point. To evaluate stability, finite differencing was

applied to obtain the slope of each equation. Locations where the sign of the residual

expression changed were counted as a solution to the BEM equation. These calculations were

then applied over a large range of design parameters.
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The code used the lift and drag data from eight S800 series airfoils (S801, S809, S810, S812,

S813, S814, S815 and S825). The airfoils were chosen for the availability of experimental data

over a wide range of angle of attack [23, 24, 25, 26, 27, 28, 29, 30]. A second set of data for a rough

leading edge was also used for each airfoil. To prevent angle of attack domain errors, the airfoil

data was extrapolated to ±180° using methods proposed by the National Renewable Energy

Laboratory (NREL) [31]. This extrapolation is common practice in turbine design. Linear

interpolation was applied for intermediate α points.

3.2. The Existence of Multiple Solutions
For every airfoil both clean and rough, regardless of whether drag was used or not, there were

regions within the design space where multiple induction solutions existed. Most had 3 unique

solutions, but some points had up to 5. The regions where multiple solutions exist is given by

figure 2. Each contour plot is defined by two design variables, while the value is defined by the

maximum number of solutions for all the points of the remaining design variable. Figures 2a

through 2c are typical for most airfoils in the study. Here, the results show that the region of

multiple solutions is nearly planar within the 3-dimensional space defined by the design

parameters. In this region the design parameters allow the blade element model to follow the

momentum model. The BEM equations with the clean S812, rough S814 and rough S815 have

multiple solutions over a much wider range of the design space. An example of this is given by

figure 2d. Thus, no assumptions can be made on where multiple solutions will exist.
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Figure 2: Multiple solution counts over varying range of parameters 
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Figure 3a shows an example of how the thrust models varied with induction to produce

multiple solutions. As expected, when multiple solutions occur, it is because the blade element

model follows the momentum model for an interval. The slight variations in the airfoil data for

this interval result in multiple solutions. The small slope of the residual function could produce

unbounded results close to the solution. Figure 3b shows how the fixed point function would

vary for the same point. As expected, the fixed point function lies on the y = x line. Here, the

slope is close to unity, consequently the solver would exhibit either slow convergence, or

divergence.

Neglecting drag in the calculations had little effect on the number of solutions found.

Including drag merely altered the region in the design space where multiple solutions could be

found. Inspection of these regions showed similar trends to those shown in figure 3.

Accordingly, the effect of drag has a minor role in the existence of multiple solutions.

Overall, the blade element equation (2) is decreasing with increasing drag and lift, thus

multiple solutions only occur when there is a decreasing lift coefficient from stall. The validity

of the airfoil data here is in question. First, stall is known to give an unsteady force response.

Second the nature of stall can vary widely due to turbulence and various other conditions.

Finally, for wind turbines in particular, the rotational effects are known to delay stall. Thus

these regions of multiple solutions coincide with the regions of greatest uncertainty in the

actual physics of the aerodynamic models.

Multiple solutions occur when the blade forces vary with induction, similar to how

induction (from the wake structure) varies with forces. In other words, the magnitude and

slopes are similar, for both the blade element model and the momentum model. Regardless of

the uncertainty in the modeling, these situations could occur in reality. Under these

circumstance, the induction is weakly dependent on the blade state and the induction would

be more strongly effected by local flow conditions. For example, with all other things being

constant, after a gust, the flow would settle into a low induction state, while after a lull, a high

induction state. Similarly, variation in the stall forces would also cause changes in the

induction state. This weak dependence could be a source of error and uncertainty in modeling

turbines when the blades are stalling. Along the interval of multiple solutions, the range of

induction is between 0.2 and 0.4, with a variation of lift coefficient between 0.7 and 1.0. This

causes significant variations in the blade forces. Given the importance of using stall to regulate

some wind turbines and in predicting loads during the turbulent conditions when stall is

entered, this could be an important insight for the design of wind turbines.
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3.3. Quantifying the Stability of the Numerical Methods
A Newton-Raphson iteration scheme will produce unbounded solutions when the slope

approaches 0. The fraction of points that had a residual slope magnitude less than 0.02 was

used as a measure of instability. Similarly, when the magnitude of the fixed point function

slope is unity or greater, the method will diverge. The percentage of points that exhibited this

behaviour was used as a measure of instability for the fixed point iteration scheme. Selected

results are tabulated in table 1. Note that the stability measures of each method are not

directly comparable, as the nature of the instability is different.

To quantify the various effects present, the average stability of the appropriate set is given

in table 2. From this data it is clear that the Newton-Raphson iteration stability is sensitive to

grit roughness. This is expected, as a roughened leading edge leads to a more gradual stall,

confirming the analytical conclusion that this is beneficial to the stability of Newton-Raphson

methods. Comparing the effect of including drag in the calculations shows that it has a minor

role in stabilizing the calculations. Overall, the stability of the fixed point function has weak

dependence on airfoil properties.

3.3.1. Newton-Raphson iteration
The location within the design space where instability occurred is shown in figure 4. The

figure shows contour plots for the Newton-Raphson stability measure. At each point within

the contour plot, two design variables are fixed; the plotted value is the average stability for

all points of the remaining free design variable. Drag was included in the calculations for all

these results. Figure 4b shows that instability occurs in a small region defined by both the local

speed ratio and solidity. This confirms the importance of these two parameters, as discussed in

section 2.1. The remaining figures show that high twist is also associated with instability. Here,

term A of equation (10) is starting to contribute to instability.

The results given in figures 4a through 4c are an example of relatively low stability. When

the S813 profile has leading edge roughness, the stability improves significantly. The stability

region of the roughened S813 profile with respect to local speed ratio and solidity is given in

figure 4d. Here, the location of the instability is less broad, and shifted towards increased local

speed ratio and solidity.
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Table 1: Stability results for selected profiles
Mean Newton-Raphson Mean Fixed Point 

Rough Ignoring Drag Instability Instability 
S825 Yes No 14 × 10–6 0.18 
S809 Yes No 50 × 10–6 0.21 
S813 Yes No 329 × 10–6 0.21 
S815 Yes No 414 × 10–6 0.18 
S809 No Yes 472 × 10–6 0.22 
S813 No No 840 × 10–6 0.20 
S825 No Yes 858 × 10–6 0.18 

Table 2: Stability of selected data sets
Data Set Mean Newton-Raphson Instability Mean Fixed Point Instability
Clean Leading Edge 553 × 10–6 0.20 
Rough Leading Edge 270 × 10–6 0.19 
Using Drag 400 × 10–6 0.20 
Ignoring Drag 423 × 10–6 0.20



26 THE BEHAVIOR OF FIXED POINT ITERATION AND NEWTON-RAPHSON

METHODS IN SOLVING THE BLADE ELEMENT MOMENTUM EQUATIONS

Twist (degree)

S
ol

id
ity

−5 0 5 10 15 20 25

0.02

0.04

0.06

0.08

0.1

0

0.002

0.004

0.006

0.008

0.01

(a) Clean airfoil

Local speed ratio

S
ol

id
ity

 
2 4 6 8 10 12

0.02

0.04

0.06

0.08

0.1

0

5

10

15

x 10−3

(b) Clean airfoil

Twist (degree)

Lo
ca

l s
pe

ed
 r

at
io

 
−5 0 5 10 15 20 25

2

4

6

8

10

12

0

1

2

3

4

5

6

7
x 10−3

(c) Clean airfoil

Local speed ratio

S
ol

id
ity

 
2 4 6 8 10 12

0.02

0.04

0.06

0.08

0.1

0

5

10

15

x 10−3

(d) Rough airfoil

Figure 4: Mean stability measure for Newton-Raphson method with S813 airfoil.

3.3.2. Fixed point iteration
The regions within the design space where the instability occurs for the fixed point iteration

function is given in figure 5. As before, each sub-figure is a contour plot showing the average

stability across the remaining free variable. The plots shown here were generated with rough

S813 data, and are typical for the other airfoils.

The results show that the fixed point iteration function has increased stability for small

angles of twist and low solidity. The plot shows increased stability for low local speed ratios.

When solidity or twist is also low, then increased stability is present at higher local speed

ratios. This region of increased stability corresponds well to design parameters expected in

well designed turbines. Despite the seemingly poor stability, this shows that a fixed point

scheme is still acceptable for most design applications. However, it is common for most

optimization algorithms to test areas in the design space far from the optimum. Accordingly,

this algorithm may not be suitable for optimization applications.

3.4. The Effect of Airfoil Data on Stability
To understand how airfoil data affected stability, the angle of attack where instability occurred

was recorded for every case. Figure 6a shows the frequency of Newton-Raphson instability

conditions at various angles of attack for the S813 airfoil. This figure is typical for other

profiles. It is clear from these figures that there is a strong correlation to the angle of attack.

This confirms that term B is dominant in equation (10). The greater frequency for negative

angles of attack show that term A from equation (10) is also contributing to instability.
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Figure 5: Mean stability measure for fixed point method with the rough S813 airfoil.

The frequency results for the roughened S813 are given in figure 6b. It is clear that

instability is confined to specific angles of attack. The difference between clean and rough

profiles is the magnitude of the frequency and more importantly the angles where frequency

is high. Referring to the lift polar given in figure 6c, it is clear that the high frequency of

occurrences correspond with negative lift curve slope.

The data for the fixed point iteration scheme showed that the instability would occur for a

wide range of angles of attack. The results for the rough S813 airfoil including drag is given in

figure 6d. The instability is strongest for negative angles of attack. This would correspond with

the instability region of large twist and high local speed ratio in figure 5c. It is important to note

that the region of fixed point instability could not be correlated to airfoil polar data.

3.5. Stability Differences Between Methods
It was demonstrated in section 2.1 that for a Newton-Raphson scheme the stability had a minor

dependence on the momentum equation. Provided that this equation is monotonic, the same

stability qualities will exist. Any momentum model that is not monotonic with respect to

induction violates conservation of momentum, hence it safe to assume that these stability

characteristics are universal.

When applying a fixed point iteration scheme, several algebraic manipulations are

applied to both the blade element model and the momentum model. A different fixed point

function will be developed for each momentum model and choice of analytic manipulation.

This fixed point function will then have its own unique stability characteristics. Thus, for the

fixed point iteration scheme, it is difficult to draw any conclusions that apply universally.



The results here show that the Newton-Raphson iteration scheme is more stable for

solving BEM equations than the more widely used fixed point iteration scheme. Yet, these

results neglect the nature of the instability. The behavior at the instability has similar

importance in selecting the appropriate numerical scheme.

When a Newton-Raphson scheme falls into an unstable region, an unbounded result is

produced. This demands techniques for handling these exceptions. A common practice is to

limit the maximum change in subsequent solutions. To prevent oscillations in the predicted

solution, relaxation could be applied. The detriment here is the difficulty in creating an

effective technique for handling these exceptions.

Alternatively, when a fixed point scheme is in an unstable region, it is unlikely to give an

unbounded prediction. Instead the scheme will bounce around a collection of reasonable

values. Under these circumstances, the common practice is to lag the solution after a given

number of iterations. The detriment here is that many iterations must pass for these lagging

methods to be activated. For a more unstable fixed point function, the method would be

much slower.

In both methods, the algorithm must be able to detect when the method is failing, and have

techniques to handle these situations. The results here show that the stability of the Newton-

Raphson scheme is tightly tied to the airfoil profile performance data, and is in a well defined
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Figure 6: The frequency of instability for the S813 airfoil.



region within the design space. This gives the algorithm many other possibilities to detect

unstable regions for the Newton-Raphson scheme. Section 2.2 showed the difficulty in

identifying the stability characteristics for a fixed point iteration scheme. For the fixed point

function here, the user is forced to iterate a set number of times to detect whether the solution

needs lagging. Thus, odd designs will significantly slow this method.

4. CONCLUSIONS
Regardless of the numerical method, the BEM equations can have multiple solutions for a

given set of design parameters. These multiple solutions occur over a wide range of induction

when the airfoil is stalled. This adds further uncertainty to results obtained in stalled flow.

When this occurs, there is evidence that the wake state will be weakly dependent on the blade

conditions. This issue is not an artifact of the BEM equations, rather it is likely a reflection of

reality. Accordingly, this has implications for other simulation methods and design. If in fact it

does exist, then accurate modeling of this condition would require methods more advanced

than the current BEM theory.

The analytical investigation into the stability of the Newton-Raphson method showed that

the stability is defined almost exclusively by the airfoil characteristics. Furthermore, the

particular form of the momentum equation has little significance to the stability

characteristics. The numerical calculations confirmed that a Newton-Raphson scheme will

give unbounded solutions when there is a negative slope in the cl vs. α curve, within a small

region of the design space defined by the twist and local speed ratio. Given appropriate

methods to handle instabilities, the well defined stability criterion is a desirable quality.

The study here investigated the stability of one particular fixed point function. For every

version of the BEM equations, there is a unique fixed point function, with its own stability

characteristics. Accordingly, it is difficult to draw conclusions that universally apply to all

fixed point schemes. For the fixed point function considered in this paper, the numerical

instability is present over a wide range of the design space and attack angles, however the

method has increased stability in the design space common to well designed turbines.

Furthermore, the fixed point iteration does not produce the unbounded solutions common in

a Newton-Raphson scheme. The user can use the number of iterations to trigger methods to

handle these regions of instability.

The generality and predictable stability of the Newton-Raphson scheme is well suited

for research applications where multiple momentum equations will be explored and

tested. However, the relatively safe behavior of the fixed point scheme is desirable in a

design application. Nevertheless, applying the fixed point scheme may not be practical for

more advanced BEM equations. Thus, care must be taken in selecting an appropriate fixed

point scheme.
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