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On the Vortex Theory of Screw Propellers.

By SYDNEY (GOLDSTEIN, M.A., Ph.D., St. John’s College, Cambridge, and the
Kaiser Wilhelm Institut fiir Strémungsforschung, Gottingen.

(Communicated by L. Prandtl, For.Mem.R.8.—Received January 21, 1929.)

1. Imtroduction.

The vortex-theory of screw propellers develops along similar lines to aerofoil
theory. Thereis circulation of flow round each blade ; this circulation vanishes
at the tip and the root. The blade may be replaced by a bound vortex system,
which, for the sake of simplicity, may be taken, as a first approximation, to be
a bound vortex line. The strength of the vortex at any point is equal to T,
the circulation round the corresponding blade section. From every point of
this bound vortex spring free, trailing vortices, whose strength per unit length
is —0T'/or, where 7 is distance from the axis of the screw. When the inter-
ference flow of this vortex system is small compared with the velocity of the
blades, the trailing vortices are approximately helices, and together build a
helical or screw surface.* Part of the work supplied by the motor is lost in
producing the trailing vortex system. When the distribution of I' along the
blade is such that, for a given thrust, the energy so lost per unit time is a
minimum, then the flow far behind the screw is the same as if the serew surface
formed by the trailing vortices was rigid, and moved backwards in the direction
of its axis with a constant velocity, the flow being that of classical hydro-
dynamics in an inviscid fluid, continuous, irrotational, and without circulation.t
The circulation round any blade section is then equal to the discontinuity in

* This system is unstable, and at a sufficient distance behind the propeller the vorticity
is mainly concentrated into as many helical vortices as there are blades, with radii somewhat
less than that of the original system, and into a straight line vortex along the axis. The
strength of each helical vortex is nearly equal to the maximum value of the circulation
round & blade section, and the strength of the straight line vortex is equal and opposite
to the total strength of all the helical vortices.

+ Betz, ¢ Gottinger Nachr.,” pp. 193-213 (1919) ; reprinted in ¢ Vier Abhandlungen zur
Hydrodynamik und Aerodynamik,’ L. Prandtl und A. Betz, Gottingen, 1927, where a
gelected bibliography is given. The theory takes no account of the finite size of the boss,
or of the influence of compressibility of the fluid at large tip speeds. The approximation
that the trailing vortices form regular helices is equivalent to neglecting the contraction
of the slip stream, and is valid only for small values of the thrust coefficient. Also, in
finding the most favourable distribution, the energy losses arising from the profile drag
of the blade sections are not taken into account.
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the velocity potential at the corresponding point of the screw surface. Further,
for symmetrical screws, the interference flow at the blade is half that at the
corresponding point of the screw surface far behind the propeller.*

An approximate solution for the irrotational motion of a screw surface in an
inviscid fluid was given by Prandtl.t The accuracy of the approximation
increases with the number of blades and with the ratio of the tip speed to the
velocity of advance, but for given values of these numbers we have no means
of estimating the error, since the exact solution of the problem has not yet been
found. It is the main object of this work to find the exact solution.

We consider first the important case of the two-bladed propeller ; formule
for any number of blades are given later. Finally, the application of the
results is briefly considered.

2. Formulation of the Potential Problem.

Let R be the radius, o the angular velocity, and v the velocity of advance
of a two-bladed propeller. Let e be the angle between 0 and = whose tangent
is v/rw, where r is the distance from the axis of rotation. The equation to the
screw surface to be considered is

0 —wz/v=00rm, O<r<R, (1)

where #, 6 and z are cylindrical polar co-ordinates. The axis of z is along the
axis of the screw surface, with its positive direction away from the propeller.f
If w is the velocity of the screw surface in the direction of its axis, and ¢ the
potential, such that grad ¢ is the fluid velocity, the boundary conditions are
that

wcosesg—jcoss—% sin ¢, (2)
or a
w= or 2 _ , 98
W = &F 3 fvrae , (3)

for 6 — wz/v =0 or © and 0 < » <R, and that grad ¢ should vanish for
¥= 00,

The geometrical conditions are such that the fluid velocity is a function
of r and 6 — wz/v only. This does not by itself restrict ¢ to be a function of
r and 0 — wz/v only, since constant multiples of 0 only and of z only may

* Betz, loc. cit.

1 ¢ Gottinger Nachr.,” pp. 213-217 (1919); reprinted in the ‘ Vier Abhandlungen.’

1 Since we are considering the motion far behind the propeller, the screw surface may
be taken as extending to infinity in both directions along the axis of z.
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442 S. Goldstein.

occur. But no term in 6 or z may occur in the expression for ¢ for r > R,
since the second would give finite velocity for infinite r, and the first would
give circulation round the axis. Conditions of continuity now suffice to show
that no term in 6 or z may occur in the expression for ¢ for r <R. Hence
¢ 18 a function of 7 and ¢, where

(=0 — wz/v. (4)
The boundary condition (3) then becomes

0¢ ¥ un
or 2+ 0*? o 5)

for {=0orwand 0 < r <R.

It is convenient to take wv/w temporarily equal to 1.  Also, let

§o= rfv. (6)

Then (5) becomes 5
9 _ _ _u 7
a 1+ @

for{=0orm and 0 <7 <R.
The differential equation satisfied by ¢, namely V24 = 0, can then be written

SRS 0%¢
=+ (1 2 = 0. 8
(bl 8+ 0+ 5 ®
In addition to satisfying (7), ¢ must be a single-valued function of position,
and its derivatives must vanish when 7 is infinite. It must also be continuous
everywhere except at the screw surface.

3. Solution of the Potential Problem.

3.1. The Form of the Solution.*—1t is not difficult to see that the conditions
of the problem are such that ¢ is an odd function of { and of §r — g, allld since
it is a single-valued function of position, continuous for 7> R, it can be
expanded, for > R, in a series of sines of even multiples of {. Assuming
such an expansion, differentiating term by term, and substituting in 2 (8),
we find that the coefficient of sin 2 must be a linear function of I,, (2nu)
and K,, (2ny), where I, and K, are the modified Bessel functions. But

* The reasons for adopting the form and method of solution to be described will be
clear to anyone who reads Appendices 1 and 2.
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I,, (2np) cannot occur, since grad ¢ must vanish when r, or y, is infinite.
Hence we may assume

¢ = QEOI Cn %ﬁ”—z———)-jsin 2n%, for r > R, (1)
= 2n
where the ¢, are constants to be determined,
o = wR/y, 2)

and K, (2np,) has been inserted in the denominator for future convenience.
We shall assume that the expansion holds also for r = R.
For 0 < r <R, we put

S
b=t b 3)
80 that 5 5 \
v 2 , : ;
K Py (LN (¥
(bgg) v 0+ = (u ()t @
and 5
b _
-ézl-— 0 (5)
at { = 0 and ~.

Consider first the region for which 0 < { <Cn. For this region

_T_4 2eos@m+1)T
C—‘z nmzzo (2m 412 (6)
If we assume
$r=So @)+ E fu(w)cos @m+1)T, (7)
differentiate term by term, and substitute in (4), we find that
Ay — dy( )
(_ud—;) folw) = %T‘("‘dp,) <1 i “,>, ®)
and
4 1 [ d\? 2
(b =m0+ ) fuw) =~ 2 sl L (). 0
¢ must be finite at 7 = 0, and so contains no term in log w. Hence
Jo () = 3= w?/(1 + ud). (10)
If we put
-+ 1 W
I = =2t { T — ()] (1)
then

< di\) —@m A+ 121+ ) g (W) =—@m+ 102, (12)
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444 S. Goldstein.

a particular solution of which is 8,,5,,,1 (2m -+ 1 ¢u), where 8;,, (2) is a Lomme
function as defined in Watson’s ‘ Bessel Functions,” § 10.71, p. 347. The

general solution contains, in addition, terms in To,.; (2m + 1 w) and Kopia
@n 1),
Corresponding to equation 10.71 (3) of Watson’s ‘ Bessel Functions’ we

have
S, (iz) = 2# L @)+ v K, (2) — t1,, (2), (13)
sin $v1
where
22 2 2°
b () = sw b (22 — v2) (42 — v2) - (22 — V%) (42 — W?) (62 — V2) Tt
+ call o (14)

(2 V2) (22— 2) .. (dm2 — )

In order to have a function which is real when z is real, and which (for positive
v) has no singularity at z = 0, we define the function T, , (2) as being equal
to the expression on the right of (13) without the term in K, (z). Thus

Ty, () = ——=—1, () — t,., (2) (15)

2 sin {vr

where #;, (2) is given by (14).* Then T, ,,.1 (2 + 1p) is also a particular
solution of (12). Its value is found by putting (2m + 1) for v and (2m 4 1)
for 2 in (14) and (15). As the general solution of (12) which remains finite
on the axis, when  is zero, we find then

In (1) = Ty omiq (2m + 1) + by Tomy1 (2m 4 1p), (16)

where the b,, are constants to be determined.
If now in (3) we substitute for ¢ from (6), for ¢, from (7), for f, from (10)
and for f,, from (11), we find

_4 2 gulw ,
¢ == MEO Bt 1 O (2m 4+ 1)¢
2 [4 Ty @+ 1p) Ty, (%—ﬂ“)]
= X [n (2m + 1) + an Taps1 (27 & 1 ) cos (2m+1)¢, (17)

m=0

where the a,, are new constants to be determined, and p, is wR /v, as before.
This expression holds for 0 < <R, and for 0 <L <Cn. Also ¢ is an odd

* The expression given in (15) for Ty, ,. (z) is indeterminate when v is an even integer.
This happens in the case of the four-bladed propeller, and will be discussed later.
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function of ¢, and for —x << { <0, we have the same expression with the
opposite sign. The discontinuity in ¢ at L = 0 or = is thus

_ 832 Tignun(@m—+1p)
[$]= 7 m2=0 (2m + 1)

+23% a, Tomir 2m A1 p) 4 (18)

It remains to determine the constants a,, in (17) and ¢, in (1) from the con-
ditions of continuity at » = R. But to do this we shall require to have the
numerical values of the T functions and their derivatives. These are not
tabulated, and so we must find formule for computing them. It will be
convenient to discuss at the same time the numerical evaluation of the first
term of (18), which is independent of w, This term gives the result for
infinite w,, that is, infinite R ; the second term gives the influence of the edge.

3.2. Discusston of the T' Functions.—The formule defining T, given in 3.1
(14) and (15) (p. 444), are suitable for computation for small p. Again, T; , (2)
and 8, , (¢2) differ only by a multiple of K, (2), which is exponentially small
for large values of the real part of z.  Hence for |arg z| <=, Ty,, (2) has the
same asymptotic expansion as S, , (iz), namely

Ty, (2) ~ 1 — v3/22 4 v2(v2 — 22) /2% — V2 (v — 22) (V2 — 42) /26 4~ ... (1)

(Watson’s  Bessel Functions,” § 10.75, p. 351).
Another formula for T; o411 (2m + 1) can be found by substituting

Tome1 (2m + Lp) = 7 (1) + 75 (0)/(2m + 1)+ 74 (w)/@m + 1) + ... (2)

in the equation 3.1 (12) and equating to zero the coefficients of powers of
(2m + 1). This gives

To = w21+ p2), )

and

1 d\?
Ty T mem—— ' r 4
+2 TF !-Lz(‘\“(lll-) T (4)
80 that

s = du? (L — w1 + o %)
Te = 16p2 {1 — 14p2 + 21ut — 4p%)(1 + @), (6)

and

7o = 64p2 {1 — THu2 + 6038 — 10657 + 460p° — 3641 }/(1 + p2)°. (T)

&
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446 S. Goldstein.

(The expansion is probably convergent for some values of u, and asymptotic
for others.) It is not immediately obvious that the formal solution of 3.1 (12)
so obtained represents Ty gn4y (2m + 1yu); that this is so becomes clear on
comparing numerical values calculated from 3.1 (14) and (15), or from (1)
above, with those calculated from (2).

By using the formule 3.1 (14), (15), 3.2 (1), (2) to (7) we can now tabulate
Ty o1 (2m + 1u).  We find that it is always very near to p2/(1 + u?),
and for any given value of p. approaches nearer and nearer this value as m
increases. If we put

2

" —
m — T omer (2m + 1) = Fopia (), ®)
the values of F,,, ., (w) for various values of .m and y are given in the table
below.
Table I.
He Fy (w). Fy () Fs (). G(p)-
{
0-2 —0-1060 —0-0156 I —0-0055 0-1260
0-4 -0-1287 —0-0271 ~ —0-0110 0-2450
0-6 —0-10562 —0-0231 —0-0096 - 0-3524
0-8 —0-06566 —0-0125 —0-0049 0-4447
1-0 —0-0316 —0-0026 —0-0005 - 0-52569
1-2 —0-0039 +-0-0040 +0-0021 0-5930
1-4 +0-0140 i +0-0075 0-0034 06501
1-6 +0-0251 0-0087 0-0036 0-6979
1-8 0-0311 0-0085 0-0034 0-7381
2-0 0-0336 0-0080 0-0030 0-7720
2-5 0-0316 0-0048 0-0020 0-8360
3-0 0-0254 0-0035 0-0011 0-8791
35 0-0192 0-0021 0-0007 0-9087
4-0 0-0141 0-0014 0-0005 0-9296
4:5 0-0102 0-0009 0-0003 0-9446
5-0 0-0073 0-0006 0-0002 0-9655
6-0 0-0039 0-0003 0-0001 0-9698
7-0 0-0021 0-0002 0-0001 0-9783
8.0 0-0012 0-:0001 — 0-9836
9.0 0-0007 0-0001 — - 0-9872
The last figure in the entries in this table may be incorrect.
Then
8 S Tyomtr @m+1y) 8 p? 5 1 _8 ) Fom11 (1)
Tm=0 (2m41) Tl plnso(@m 412  mao(2m+ 1)

ol 8 2 Famy(w
=T {1 e a2, @ 1)2}' ®)
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The expression in curly brackets is also tabulated in Table I, where it is denoted
by G (). Since the F are small, and decrease with s, the tabulation is rapid.

The values of G (p) for p = 2-8, 3-8, 4-8, 5-5, 5-8,6-5, 6-8, 7-5, 7-8, 8:5,
88, 9-5 and 9-8 will be required later. They were found by interpolating in
tables of p2/(1 4+ p?) — G (), ete.

This completes the discussion of the first term of 3.1 (18) (p. 445). To
evaluate the second term we shall require the values of the derivatives of the
T functions, formule for which are obtained by differentiating the formulae
for the T functions themselves. The approach of (2m -4 1) T’} 2,11 (2m + 1)
18 to 2u/(1 + w22

A few values are given below for exhibition purposes. (The dash denotes
differentiation, so that T’y , (2) is dTy,, (2)/dz).

T, (5) = 0-0185, 3T', 5 (15) = 0-0152, 2.5/(1 + 25)2 = 0-0148.
T/, (3) = 0-0723, 3T, ,(9) =0-0630, 2.3/(1 -+ 9)2 = 0-0600.
T, (2) = 0-1543, 3T',,(6) = 0-1649, 2.2/(1 - 4)* = 0-1600.

3.3. The Determination of the Constants a,.—We must now turn t¥ the
determination of the constants a,, in 3.1 (17) and (18) (pp. 444-5) from the
conditions of continuity at7 = R. The conditions are the continuity of ¢and
of 0¢/dr. At r =R, and { =0 or =, singularities are to be expected, and so
we cannot obtain analytical conditions for continuity there. Also ¢ is an odd
function of {. Hence it is sufficient to ensure continuity for 0 < <, and
continuity for —n <Y <0 will automatically follow. But in the range
0 <t <m,

cos (2m + 1) { = 8 3 2 ., sin 2nL. 1)
Top=

1472 — (2m + 1)
We substitute this into 3.1 (17), re-arrange the resulting double series, and
equate the coefficient of sin 2n% so obtained to the coefficient of sin 2n% in
3.1 (1) (p. 443), for p. = p,. We then differentiate both 3.1 (1) and 3.1 (17)
term by term with respect to p and repeat the process. This gives us the

equations
2 (4 Tiomis } 8n
~ Gm 1P T = T 2
I lrmett el mmry @)
and
2 (4 T omia I,2m+1} 4(2m-4-1) K, .
,,Eo{n T A P e i ®)

The argument of the functions Ty oni1 T’y 2m+1r lomer and I'pppq 18
(2m + 1) py; that of Ky, and Ky, is 2np,. Dashes denote differentiations,

P P Y
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448 S. Goldstein.

as before. Both equations hold for all integral values of n. Eliminating ¢,
gives us the equation

J 9 I/Qm»%l B KI.‘Z’n}
A m 4 1) =2t 2
7_7'_ S ( + ) .[2m.+1 K2n —
4 o 4n® — (2m + 1)2
%M K’z § Ty omes & (2m4-1) Ty opiq (4)

Ko, = 0(2m~4-1)2[402— (2m—+1)%] - m=o0(2m+1)2[4n2— (2m-1)2]

We have then an infinite number of linear equations with an infinite number

of unknowns. The standard method of solving is to find successive approxi-
mations—to solve the first equation with @, = a, = a; = ... = 0, then the
first two equations with @, = a3 = ... = 0, and so on. But we may anticipate
from the singularity in ¢ at the edges (» = R, ¥ = 0 or =) that the convergence-
will be very slow. We have to solve for a whole set of values of yu,, and the
work would be prohibitive and the results inaccurate. Fortunately we can
escape this difficulty.

We have seen that, so long as w, is not too small, T; o, (2m + Lyug)
is nearly equal to wg?/(1 4 @o?), and that (2m + 1)T’; 5,4, is small compared
with Ty 5415 also (2m + Dy, /T, — 20K'9, /Ko, is nearly equal to-
(1 4+ we®)!(2m + 14 2n), and K's, /Ky, is nearly equal to —(1 4 w2)i*
Thus approximately our equations may be written

E]

D EL02 > 1

TE oG, >
4,020 —2m — 1 1 4 wo? m=o (2m + 1)2[4n? — 2m -+ 1)2]
SN 7wt (5
1+ w1607
or
C — T (6)
m=0 20— 2m — 1 1+ e 4n
These equations may be solved exactly (Appendix 3), the solution being
o .
a, = — - A,,, where
" 1+ po?
. - 1.3 1.3.5
Ay =1, 3A, =1, :)Agzm, 7A3=2.4'6,,., (7)
We then put}
— U -
Uy = — 'l":}-;on Am + Sms (8)‘

* See the asymptotic approximations to I, (nx) and K, (nx) given by Nicholson, * Phil.
Mag.,” vol. 20, p. 938 (1910). But the approximations are much better than might be
expected, especially for (2m + 1) I'oy 1 1/Topr1— 20K 2, /Ko,

+ The symbol ¢ is differently used in section 2.
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substitute in (4), and solve numerically for g, <,, ... in the manner described
above. The ¢ are small; even for the lowest value of ., to be considered,
namely 2, the degree of accurgcy we shall finally aim at is attained if ¢, is
found correet to two significant figures, with a possible error of 1 or 2 in the
second figure, if ¢, is found to one significant figure, and if the other ¢ are
ignored. The convergence is slow, but not so slow that we cannot manage
this with a reasonable amount of labour. The equations were solved numeri-
cally for u, =2, 3 and b, with the following results :—

po =2; gy = — 0-061, g = 0-013. ' (9)
o =3; &g = — 0-047, ¢, = 0-007. (10)
o =09; gg=—0:033, g = 0-004. (11)

It will be seen that, to one significant figure, —g, is 0-06 when yg is 2; it is
0-05 when u, is 3, and 0-03 when p, is 5. It was therefore taken, without
any further ado, to be 0-04 when pgis 4; to be 0-02 when y, is 6, and 0-01
when pg is 7; and the other ¢ were neglected for these values of u,* For
higher values of p, all the ¢ may be neglected,

Thus we find the @, to a sufficient approximation. The I functions can be
found in tables, and the second term in 3.1 (18) easily calculated. Unless u
is very near indeed to w,, the terms decrease rapidly, and we require only the
first few terms.

3.4. The Distribution of Circulation.—From 3.1 (18), 3.2 (9) and 3.3 (8)
2 2/ g Lyit (2m + 1 )
] =G — = X —“'L— — & _%L: 5 1
=) = 2§ (fshe —ea) gt O
where G () is the expression in curly brackets in 3.2 (9) and is tabulated in
Table I, A, is given in 3.3 (7) and ¢, in 3.3 (9), (10), (11) and the paragraph
following.
As mentioned in the introduction, [#] is equal to the circulation round the
corresponding blade section. If now we restore the factor wv/w, temporarily
taken as 1 from the end of section 2 onwards, we have

Mo 2 &/ e Y lomay (2m 4 1) .
= =G(p)—= X (A, —,) Bl 2
N S Y. PR

* This will increase the possible error in the calculated value of I'u/mwv at uw = 3-8
when p, is 4 to about 7 or 8 in the last figure. Consequently, the corresponding point in
the graph may be displaced this amount if the curve can thereby be smoothed. The
actual displacement was from 0-334 to 0-330. '
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There is no further difficulty in computing the expression on the right. The
values for w, =2, 3, 4, ... 9, 10 are given in Table II below. These are the

Pable T1.——The Values of Mo Jruw.

N | i i
NHo | i :
AN 3. . 4 5 6. 7 8 . 9 10
N\ f 1‘
I
0-0 0 ) 0 0 0 0 Lo 0 0
0-2 0-092 | 0-111 ! 0-120] 0-124 | 0-125 | 0-126 | 0-126 | 0-126 { 0-126
04 0-175 | 0-213 | 0-232, 0-240 | 0-243 | 0-245 | 0-245 | 0-245 | 0-245
06 0-243 | 0-303| 0-331 | 0-344 | 0-349 | 0-351 | 0-352 | 0-352 | 0-352
08 0-205 | 0-379 | 0:418 | 0-434 | 0-441 | 0-443 | 0-445 | 0-445 | 0-445
1-0 0-329 | 0:440 | 0-489 | 0-511 | 0-520 | 0-323 | 0-525 | 0-526 | 0-526
1-2 0-341 | 0-485 | 0-548 | 0-575 | 0-585 | 0-590 | 0:592 | 0-593 | 0-593
1-4 0-331 | 0514 | 0.592 | 0-626 | 0-640 | 0-646 | 0-649 | 0-650 | 0:-650
1-6 0-295| 0-5331 0.-628 | 0-669 | 0-687 | 0-694 | 0-696 | 0-698 | 0-698
1-8 0-220 | 0-537 | 0-65¢ ; 0-704 = 0-724 | 0-732 | 0-736 | 0-737 | 0-738
2.0 0 0-525 | 0-670 | 0-731 | 0-785 | 0-766 | 0-769 | 0-771 | 0-772
25 0-427 | 0-676 ' 0.770 | 0-810 | 0-826 | 0-832 | 0-835 | 0-836
2.8 0.303 ® : * H* *® * *® *
3-0 0 0-621 | 0-775{ 0-838 | 0-863 | 0-873 | 0-877 | 0-878
3.5 0-486 . 0-747 | 0-846 | 0-884 | 0-899 | 0-905 | 0-908
3.8 03341 * * * * * *
4.0 0 ! 0-671 | 0-830 | 0-890 | 0-915 | 0-924 | 0-927
45 " 0:519 | 0-786 | 0-882 | 0-920 | 0-935 | 0-940
4.8 i 0.35]_ * * * * *
5.0 [ 0 0-701 | 0-858 | 0-918 | 0-941 | 0-950
5-5 ; 0-543 * * * *
5-8 | 0-368 * * * ¢
6-0 : 0 0-717 | 0-874 | 0-932 | 0-955
6'5 ! 0.554 * * *
6-8 \ 0-376 * * *
7-0 | ] 0-728 | 0-883 | 0-941
7-5 ‘ 0-560 * *
7-8 ‘ 0-382 * *
80 | ; 0 0-734 | 0-890
85 i ‘ T L0566 *
8-8 ‘» i 0-386 *
9-0 ‘ L0 0-738
9:5 ! 0-560
9-8 | 0-388
10-0 0

1

* Not. calculated.

calculated points from which the full line curves in fig. 1 were drawn. It may
be mentioned that in terms of the usual parameter J, equal to »/nD, where 7
is the number of revolutions per unit time and D is the diameter, we have

o =w/J. 3)
In view of recent and possible future developments, values of y, as low as 2

were considered.
In general, the error in any entry in Table II should not exceed 2 or 3 in the

last figure.
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In the notation here used, Prandtl’s approximate solution is

Lo :

where :
f=1 = wlu) 1+ gt (5)

This is shown by the broken lines in fig. 1.

3.5. The Determination of the Flow.—The potential for the flow for » <R,
0L, is given by 3.1(17), where the a,, have been determined to a sufficient.
approximation. Restoring the factor wv/w, we may write, using 3.2 (8)

w4 p? =2 cos(m41)T 4 $ Fz”‘“(“)gcos@m—}—l)c

wy w1l pZa_o (2m 4 1)2 7 moo(2m + 1)

_ § / P'QZ A, — Sm\ Lomga (2m -1 w) 9 1
(1 + wt )Im+1 (2m -1 pg) cos (2m +1)¢
— ¥ g% % Famna(y)

T+ 2 3= —0) ﬁmz: o@m 1)200&; 2m+1)¢

m=0

® 2 Tome1 (8m 41 w)
— 3 (Be A, ¢, |2mil cos (2m+ 1) % (1)
m=0<1 + to” ,>12m+1 (2m 1 ug) ( ) )

Hence

2 @D
e A AL Tes IRk

+ 3 (A, ) L CnELw) o 4 gyin@mt 1)L (2)

m=0 1+ e’ ! oms1 (2m—+1p,)

Since Fs,, 44 (1) 1s given in Table I, this is easily calculated. We notice that the

first series in the last term of 3.1 (17) cannot be differentiated term by term.

with respect to ¢, since the resulting series does not converge.
Also

w a(f) 4 = T,l omad (-2-;'7—_‘_—1“)
— ot == - Tromp@mt1ly) o 1
B mme amp1  cs@mE T

s [ _ug | Yoy (B Tp) ‘
— Z ( ) ‘Am— Sm)—zm-HT 2‘m+1 cos 2m—}~1 Z_ 3k
m:O\*l’*‘P-oz / 12m+1 (2m+ 151.0)( ) ( ) ( )

9
The first term approaches (T—;_————"W(%n —Z). Since

Vomar 2m + 1 o)/ Ioprs 2m + 1 pg)

A . & A - T
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tends, with increasing m, to become independent of m, we can easily see
from 3.3 (7) (p. 448) that the second term becomes infinite at w = g, like a
multiple of (1 — p2/u2)™h

If u,, us and u, are the fluid velocities in the directions of », 6 and z increasing

respectively, then

_19¢_ 0104
WS T o udt’ A
__0d3
uz_ ,vac (5)
and 5
. w0é
u,.——-;ap.. (6),

Hence the fluid velocities at any point are easily found from (2) and (3).

At the surface, u; and u, are determined by the boundary condition alone,
and are

ug = — w /(1 + p?), u, = wp/(l + p?). (7)

At the propeller the velocities are half as much, if the contraction of the slip-
stream be neglected. '

The potential for the flow for » > R is given by 3.1 (1) (p. 443), from which
we see that the flow dies away rapidly as r increases. It is of some interest to
find approximations for the constants ¢,. This is done in Appendix 3, and
the result is

2 C
__ Ko m
Om 1+ po?2m’ (8)
where
1.3 1.3.5
. .
G=% G 51 BTa a6 9)

Expressions for the fluid velocity can be written down at once. Thus

13K&Mmﬂphj,um

s %+53 4K, (41,)

U, = —

1+ Ho [ Kz 2&’-0)

and so on.

4. The Solution for any Number of Blades.
4.1. Let us suppose there are p blades. Then

0\ 8¢>_
(wg,) #+ 0+ gk =0 .
Qﬁs_ 2_71: 4 2p—1)m
5 IJHL__fow\R at L =0, 0 P p » (2)

and grad ¢ vanishes for r = .
VOL. CXXIIL.—A. 2=

A P —

e

e ——
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The solution for 7 <R, 0L 2nfpis

wé 8 2 Typmip(m+ $pu) i
w  pm mZio @m + 17 cos (2m + 1) 5

2 2= Ly i (m 4 $pu) P
s B ¥ P — 1 2 cos (2m + 1)=2, (3)
P 1+ po® m=o Lpm+s) (m - 3 piso) 2

where, approximately, the A,, have the same values as before, namely,

1.3

Ay=1 3A=1} 5A2=m,... 4)
The exact values can be calculated in the same way as for two blades. The
approximation becomes better and better the greater o and the greater the
number of blades. ‘

Forr > R,

ob 2wt g G KO
w0 3 T gt 21 20 Ko (prpg) P ®

where, approximately,

[y
fa—

.3 .3.5

1 9 — .
Co=% Co=g7 G=371.% (6)
As before, Ty, p -3 (M -+ 3 pp) is near to u?/(1 + p?). We put
2 ——me
IJ_:—E — Ty pmen (M + 3 P1) = Fpomia (1), (7)
80 that
$ Ty pmep (M 4+ 3pp) _ 7% _p? 3 Fo om+1 (), @)
m=0 (2m + 1) 81+ &‘-2 m=0 (2m 1) ’
and we find for the distribution of circulation
plo _ ¢ 8 2 Fhomn(p)
w14 p2  mmeo @mA41)°
2 w? 2, Lmep(m+ pu)
-—= Y A,2 . 9)
T L1+ gm0 Lpmrp (m -+ $Ppo)

The A,, are given in (4); the I functions are the modified Bessel functions,
defined as in Watson’s ¢ Bessel Functions.” The F are related to the T
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functions by (7); to calculate the T functions we have formulwe 3.1 (14) and
(15) (p. 444), and formula 3.2 (1) (p. 445). Also

Topmed M+ §o8) = 7o () + o4 _10m() 40

PP@EmA41)2 " p*(2m + 1)
where
To = p2/(1 4 u?), (11)
and
i ‘ 2
Tr+z = mz (P-%) T (12)

80 that the v are the same as in 3.2 (3) to (7) (p. 445).

The only new point that arises for a three-bladed propeller is that the Bessel
functions Iy, Igp, ... are not tabulated.* There are simple finite expressions
for these functions, and to calculate the value for any one value of the argument
is not difficult. But to make even a rough table involves a not inconsiderable
amount of work. The numerical work for the three-bladed propelleris therefore
left over for the present.

4.2. The Four-bladed Propeller.—For a four-bladed propeller we have to
calculate Ty , (2), where v is an even integer. The analytical peculiarity men-
tioned in the footnote on p. 444 enters, the expression 3.1 (15) for Ty,, (2)
becoming indeterminate. However, the asymptotic expansion 3.2 (1) (p. 445)
terminates, and is equal tof 81,, (%2) or Ty, (2) + (—1)¥ vK, (2), so that
Ty,, (2) can be calculated from the formula

Ty (2) =1 — V3224 V2 (V2 — 22) 28 — 2 (v2 — 22) (v2— 4228 .,
— (=¥ K, (). (1)

The numerical calculations were carried through for y, = 5, the approximate
values of the A,, being taken as in 4.1 (4) (p- 454). The values of 2T w /ruw,
as given by 4.1(9) with p equal to 4, are shown in the table below
(Table III) and by the full line graph in fig. 2. The values of Fy 1 (u) or
;:.2/(1 + p?) — Ty 2 (2u), are also exhibited. It was not necessary to calculate

F2 5 (1), and the term in F, ; () never contributed more than 1 to the third
figure.}

* No tables are recorded in Watson’s © Bessel Functions’ or in Mises, ° Verzeichnis
berechneter Funktionentafeln,” Berlin, 1928.

t Watson, ‘ Bessel Functions,’ § 10.71, p. 347.

1 I the F are neglected, and we put #2[(1 + p?) for T in (1) with » equal to (4m - 2)
and z equal to (4m - 2) u, we have an approximate formula to calculate K. This method,
for example, gives K, (1-2) equal to 11974221 instead of 1197-4227, as given by Watson,

2H2
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Table TTT.—Values of F, , (@) and 2T w/nwy for a Four-bladed Propeller for

o = D.
He Fy, 1 () 2w |wwv. . Fy 3 (p) 2I w|mwv.
0-1 —0:0150 0-022 1-8 0-01567 0-750
0-2 —0-:0341 0-066 2.0 0-0152 0-785
0-4 —0-0517 0-180 25 0-0115 0-848
0-6 —0-0432 0-300 30 0-0077 0-881
08 —0-:0248 0-411 3-5 0-0050 0-887
1-0 —0:0075 0-506 4.0 0-0033 0-851
1-2 +0-0047 0-586 45 0-0021 0-714
1-4 4-0:0117 0-6562 4-8 0-0017 0-505
1-6 0-0149 0-708 5-0 0:0015 0
_\

3 4 o S

Fic. 2.—TaE DIsTRIBUTION OF CIRCULATION ALONG A PROPELLER BLADE FOR A FOUR-
BLADED AND FOR A TWO-BLADED PROPELLER, WHEN THE ENERGY LOST IN THE SLIP
STREAM IS A MINIMUM FOR A GIVEN THRUST.

The full line curves give the exact solution, the dotted curves the Prandt] approxi-
mation. In each case the curve with the greater maximum ordinate refers to a
four-bladed propeller, the one with the less to & two-bladed propeller. The ordinates
are pTw/2mwv, and the abscisse or/v, where pis the number of blades and the other
symbols have the same meaning as before (fig. 1). The curves are drawn for wR/v
equal to 5. As before, each full line curve and the corresponding dotted curve are
drawn for the same value of w.
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- The Prandtl approximation for a four-bladed propeller is

e e L @
where
f= (14 g (1 — p/gy). (3)

This is given by the broken line curve of fig. 2.

5. The Application of the Solution.
Let

K=2Te (1)
2 wv
where p is the number of blades. We shall assume the distribution found
in the previous sections, so that K is a given function of /R for any given
value of py, or wR/v. ‘
Let T be the thrust and Q the torque of the propeller, p the density of the
fluid in which it is operating, and ¢y and cq the non-dimensional coefficients

defined by

cp = T/rpR%?2 (2)
and
cq = 0Q/mpR%A. 3)
If 7 i3 the efficiency,
' n = 0T/wQ = cp/cq. (4)

Let uy and u, be the circumferential and axial components of velocity far
behind the propeller, as given by 3.5 (7), so that wy = — wu /(1 4 u?), and
u, = wyp2/(1 4 p?). The velocities at the blade are half as much, if the con-
traction be neglected.

Let
r/R =z and wfv= A (5, 6)
Then
p= orfv = . (7)
Let us first neglect the profile drag of the blade sections. Then
aT _ L) = < ISV 8
G = PoT (rw + ) = peT (o — =) ®)
from which we find
dor _ 9yky — NKZ 9
M T ®)
so that
op = 201, — A, (10)
where
1 Kxdx
I =§‘de$, and I =§ Razdo 11, 12)
1= 2 =) TF it (
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I, and I, are functions of y,, most easily found by plotting the integrand and
using a planimeter. They can be plotted against yu, once and for all.
Further

dQ
= ppl'r (v + Iu,) -—ppl’r(v—l—%wl_}_ ) (13)
from which we find
de 2u K23
Cq .. Ao BT
T 22Kz 4+ T aiz? (14)
so that
cq = 2AL, 4 A2pgil,, (15)
where
K3dz
2, = ul?| ——— =1, —1,.
wofls = i o 1 poa? 1— 1 (16)
Hence
1, — 41,
= 1 _272 17
K I, + $ue®Al, an

Thus, working at any given value of u,, we find A in terms of ¢y from (10),
and then v from (17). 'We thus get a series of curves of v against ¢ for different
values of w,, or of n against w, for different values of ¢;. The thrust and torque
grading curves are given by (9) and (14).

The theory holds only for small values of 2, for which we have approximately

1 1,
f—t == s 18
Kl vy 37 A Uy ) A s v (18)
and
A = co/2L,. (19)

We easily find that the energy lost per unit time is wpePR2A2L,.

If 6 is the blade angle, the incidence of any section is 6 — ¢, wheret

_obdu _ 1 Lbhpdah g
tan ¢ = ro+3uy per 1 — 31 pe?) Y (1+ 32) approx. (20)

We pass on to consider the effect of profile drag. Let € be the ratio of drag
to lift for a wing of infinite aspect ratio with the same section as the blade
element at a distance 7 from the axis.t The contribution of the drag to the

* This form is preferable to 1 — }A,, since pg?I; is greater than I,.
1 The symbol ¢ is differently used in sections 2, 3 and 4. The symbol ¢ is differently
used in sections 2 and 3.
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‘element of thrust is then — ¢ dQ,/r, where dQ, is the element of torque in the
absence of profile drag. The contribution to the element of torque is similarly
er dT,, where dT | is the element of thrust in the absence of profile drag. Hence

dep _ deq, & deq,

de  dx  pgx dz’

and
ch — chn dCT
Tz e =
dex,/dz and deg, [dx are given by (9) and (14). Hence
degp Kz 2A eKa?
i - — )2y, EBET
T 2Kz 1 TTui —e¢K—N\ o7 T ol
and
de Ka? eKa?
Yo 2 —— 2 — Ny s
T 2Kz 4 A2p,2 T 22—*—27\;1.0:-:Kw 7\901_*_”0%2
Consequently
6p = 2T, — WL, — 221, — 2yl
to
and
cq = 2L, + W2pg; + 2Apels — A2pols,
where
r
I4 == eK dw,
Jo
1 eKa?dx
1= =2
Jol -+ Po2w
and
(1
Ig = | eKa?dx.
Jo
Then

— Cp I ‘“§>\12_14/P"0'—2‘)\H015
Cq Il + 17\}1. I3 + HOIG —%7\@01"

For small values of A and ¢,

1

K Ry

where

T, = Tufug -+ pols = - [ oK (1 + poa?) da.
Koo

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(32)

Thus the influence of friction is of order ey, and friction has more influence

on propellers the greater the ratio of tip speed to forward velocity. The

T
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determination of ¢ depends upon the incidence, and therefore on the angle ¢.
For some purposes it is advantageous to take a rough average of ¢, and write

I =< FK (1 4 poia?) da. (33)
Yo Jo

The integral is then a pure function of . Any losses dependent on the varia-

tion of the distribution of T' from that taken here can be thrown into the ¢

term.

For accurate work we take a set of values of A, calculate ¢ from (20), find €
and determine I,, Ty and Is graphically. The corresponding values of ¢y are
given by (25), and of v by (30). Hence we get the curve of 1 against cy for the
given blade and the value of g, considered. We can get a set of curves for
different values of p,, which can be turned into a set of curves of v against g

for different values of cy.

The above considerations are valid only if X, or ¢x/21y, 1 small. For moderate
loads we get a better approximation if, following Prandt], we replace v by
v+ Jw. Again, according to Betz, ‘Handbuch der Physik,” vol. 7, pp. 256—
259 (1927), the contraction in the slip stream can be allowed for by considering
a screw surface for which pyis @R/(v + w), so that the solution of the potential
problem given here will still retain its usefulness. But there are still difficulties
to be overcome in applying it, and a closer discussion must remain over.

My thanks are due to Prof. Betz, who suggested the problem to me.

Summary.

The distribution of circulation along a propeller blade when, for a given
thrust, the energy lost in the slip-stream is a minimum, is calculated exactly
and compared with the approximate Prandtl formula. Numerical values are
given, for a two-bladed propeller, for various values of wR/Jv, where w is the
angular velocity, R the radius, and v the velocity of advance of the propeller.
From these values the curves in fig. 1 were drawn. An example (0R /v = 5)
was also computed numerically for a four-bladed propeller, and the result is
shown in fig. 2. The distribution for any number of blades and any value of
oR/v can be worked out numerically by the method used, the work being
easier the greater the number of blades and the greater wR/v. Formule for
the fluid velocities far behind the propeller were found, from which numerical
values can be worked out by the help of methods and numerical tables given.
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"Formulse are set out for the distribution of thrust and torque, and for the
efficiency, when the distribution of circulation is that calculated.

ArPENDIX 1.
The Solution in Trigonometrical Series for a Rotating Lamina.

If the screw surface moves along its axis with velocity w and rotates with
angular velocity ww/v about its axis, its displacement is merely along its own
surface. The fluid motion is therefore the same whether the surface moves
along its axis with velocity w, or rotates about its axis with angular velocity
®;, equal to —ww/v. If w/v becomes zero while , remains finite, we fall
back on the case of the rotating lamina, whose solution* is

¢ + 1y = — HR2w e %, : (1)
where £ = § + 4, and &, n are elliptical co-ordinates given by
7 = re = R cosh t. (2)
The solution is easily put into the form of trigonometrical series. For
Re~t = © — (72 — R3)}, (3)

Hente
R2e~2% = 212 — R2 — 27 (12 — R2)?

. 2 1.1+ 1.1.3+8
1.1.3.5+°
S L A B | R
3.4.6.8R° }Orm<
R2 1.1R* 1.1.3R®
—22—Rz—22]p 3> .t L.1.0n 0
== T{ i S b R N }
for|z|> R. (4)
Hence
— : 2 1. —1{r} _L.1/ry
¢ = }u? sin 20 F $R%o, {R cos § %\R> cos 3¢ 5 4<R> cos bg
1.1.8/rV 1
—2—.—4—.—6<ﬁ>0087c-—‘...ff01'7'<R
\2 "
= — 3R, {;—i <%) sin 2 4 ;4—%(%) sin 4% - } forr > R. (5)

3

The discontinuity in ¢ is w,r (R? — r?)

* Lamb, ¢ Hydrodynamics,” chap. iv, § 72.

e e
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APPENDIX 2.
The Solution of the Potential Problem for oR Jv small.

We return to the potential problem formulated in section 2, namely,

8‘2
(g 6+0a+ WgE=o,

a?= Ml___f_wza,tC=00rnf0r0<r<R,

grad ¢ = 0 at r = o, and ¢ is a single-valued function.
We assume

__z Lo, (2 2 Eb MLM_E)
¢ a,lo, (20p) sin nC—}— Loy, @ )cos @m -+ 1)¢

forr <R, 0 <,

and
¢ = i‘.cwsinZanorr}R.
" Ky (2004)
Then
0 ©
(5?>§ 0 or =n=1 2mn12” (2",“).
Now

p2 9% (11
1 + ”2 — zngl( 1) IZn (2"'!1'),

if p is less than 0-66 ... (Watson’s ‘ Bessel Functions,” Chap. 17).
Hence, if py << 066 ..., we can take

Oy = (—1)"/7’&.

(1}

(2)

3)

(4)

(6)

(6)

()

The constants b, and ¢, are then to be found from the conditions of con-
tinuity at w = w,, namely, the continuity of ¢ and of 0¢/0r. This can be

done numerically as in 3.3, by expanding cos (2m - 1){ in a sine-series ;

or

by assuming all but a finite number of the b, and ¢, to be zero, and equating
the expressions for ¢, and also for d¢/or, at a finite number of selected values

of § between 0 and =. The convergence will be slow.
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APPENDIX 3.

The Approximate Determination of the Constanis a,, and c,.

1. Let
o 1 /gy \® . » r\2m+1
¢ = E‘. —2—<—;) sin 206 — m};‘.oAm<-a—> cos (2m 4+ 1) O
forr <o, 0 <O m,
2 a\* .
= X B,(-—) sin 2n0 for r > a. (1)
n=1 r

Forr a, —n < 0 <0, let ¢ be as in the first line with the sign of the second
term changed.

Expand cos (2 + 1)6 in a sine-series for 0 << 6 <{ &, and equate coefficients
of sin 2n6. We obtain

An. (2)

Differentiate the two expressions for ¢ with respect to r and repeat the process.

This gives .
1 4 o= 2m 4 1
B = 2n W om0 402 — (2m 4 1)2 3)
Eliminate B,. 'Then
® A, o v
T —em—1 A *
The equations (2), (3) and (4) hold for all positive integral values of #.
The value of ¢ so found is the solution of the problem defined by
0%¢ 62¢>
1 Q_‘é) 1 = <’r>2" 7
— = - _— r— 6
<736 gvorm T E a a? — 2’ (®)

grad ¢ = 0 at r = @, ¢ is a single-valued function.
This problem can be solved in finite terms by means of elliptic co-ordinates
£, v for which

z = re® = a cosh . : (8)

T
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The boundary condition becomes

¢~cotv; at £ =0, 9)
and the solution is
¢+ ip =1log (1 — e, (10)
Now
~% = 222)a2 — 1 — 2(z/a) (22/a? — 1)}, (11)
80 that

¢+ 1y =1ilog2 +7log [l — 22/a? + (2/a) (23/a® — 1)}]
=1 log 2 4+ ¥ log (1 — 22/a?) — sin™1z/a
=1 log 2 — 3 (2%/a® + 2%/2a% 4 2%/3a® 4 ...)

z ,1.122 1.312%  1.3.5127
S R B K A T B A R R ). 12
<a+2.3a3+2.45a5+2.4.67a‘+ > (12)
Thus '
r2 . rd .
¢=%<Esm26+%a—43m46—{— >
3 1.31¢°
< cose—l— “00536+§'_§'3 cos 59 4 .. > (13)
and the solution of the equation (4) is
1.3 1.3.5
A, =1, 3A, =1, 5A2=ﬂ’ 7A3=2.4.6"” (14)
The solution of the equations 3.3 (6) is then
2
= Ho 4 15
am m’
o (15)

where the A, are given by (14).
2. With the approximations described in 3.3, the equations 3.3 (3), p. 447,
become

42 (@mtla, _ 6
ol R —@miE ™ (16)
This is the condition that
S @m+1)a,cos (@m-1)0 = — > 2nc, sin 210 (17)
m=0 n=1

for0 O << me.*

* This comes directly if we differentiate 3.1 (1) and 3.1 (17) term by term with respect
to u, equate the results for p equal to g, and make the approximations described in 3.3.
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Omit temporarily the factor — po?/(1 + wo?), and take

_1.8.5..@2m—1)
@m+1) an = T (18)
Let
C= % @m+1)a, cos (2m+1)6, (19)
m=0
and
S = % (2m-1)a,sin (2m+1)6, (20)
m=0
so that )
CiS = S = i
T A=t T (1 — e
=:}:i<l+%e‘2“’ 1.3 —4"’+...>. (21)
Then
_ . 1.3
C-;I:(\;l;sm26+§-——45m46—|— ) (22)
and
- 1.3
S_i<1+%cos29+2.4cos49+...>. (23)

Putting A = §= in S, we see that the upper sign must be taken. Restoring
the factor — we2/(1 + wo?), we have finally

_ G
=7 T o Zn (24)
where
1.3 1.3.5
Cl=%’ Cz—"_‘, 03=2'4.6“" (25)

PO P ——— e S




